Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8166, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589455

RESUMO

This study involves the development of a new nanocomposite material for use in biological applications. The nanocomposite was based on tragacanth hydrogel (TG), which was formed through cross-linking of Ca2+ ions with TG polymer chains. The utilization of TG hydrogel and silk fibroin as natural compounds has enhanced the biocompatibility, biodegradability, adhesion, and cell growth properties of the nanobiocomposite. This advancement makes the nanobiocomposite suitable for various biological applications, including drug delivery, wound healing, and tissue engineering. Additionally, Fe3O4 magnetic nanoparticles were synthesized in situ within the nanocomposite to enhance its hyperthermia efficiency. The presence of hydrophilic groups in all components of the nanobiocomposite allowed for good dispersion in water, which is an important factor in increasing the effectiveness of hyperthermia cancer therapy. Hemolysis and 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays were conducted to evaluate the safety and efficacy of the nanobiocomposite for in-vivo applications. Results showed that even at high concentrations, the nanobiocomposite had minimal hemolytic effects. Finally, the hyperthermia application of the hybrid scaffold was evaluated, with a maximum SAR value of 41.2 W/g measured in the first interval.


Assuntos
Fibroínas , Hipertermia Induzida , Tragacanto , Alicerces Teciduais , Hidrogéis , Fenômenos Magnéticos
2.
Sci Rep ; 13(1): 20845, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012184

RESUMO

In this research work, a magnetic nanobiocomposite is designed and presented based on the extraction of flaxseed mucilage hydrogel, silk fibroin (SF), and Fe3O4 magnetic nanoparticles (Fe3O4 MNPs). The physiochemical features of magnetic flaxseed mucilage hydrogel/SF nanobiocomposite are evaluated by FT-IR, EDX, FE-SEM, TEM, XRD, VSM, and TG technical analyses. In addition to chemical characterization, given its natural-based composition, the in-vitro cytotoxicity and hemolysis assays are studied and the results are considerable. Following the use of highest concentration of magnetic flaxseed mucilage hydrogel/SF nanobiocomposite (1.75 mg/mL) and the cell viability percentage of two different cell lines including normal HEK293T cells (95.73%, 96.19%) and breast cancer BT549 cells (87.32%, 86.9%) in 2 and 3 days, it can be inferred that this magnetic nanobiocomposite is biocompatible with HEK293T cells and can inhibit the growth of BT549 cell lines. Besides, observing less than 5% of hemolytic effect can confirm its hemocompatibility. Furthermore, the high specific absorption rate value (107.8 W/g) at 200 kHz is generated by a determined concentration of this nanobiocomposite (1 mg/mL). According to these biological assays, this magnetic responsive cytocompatible composite can be contemplated as a high-potent substrate for further biomedical applications like magnetic hyperthermia treatment and tissue engineering.


Assuntos
Fibroínas , Linho , Hipertermia Induzida , Humanos , Fibroínas/química , Hidrogéis/química , Materiais Biocompatíveis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Células HEK293 , Fenômenos Magnéticos , Seda/química
3.
Int J Biol Macromol ; 253(Pt 4): 127005, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37734527

RESUMO

A magnetic xanthan hydrogel/silk fibroin nanobiocomposite (XG hydrogel/SF/Fe3O4) was designed, fabricated, and characterized using analyzing methods such as FT-IR, EDX, FE-SEM, XRD, TGA, and VSM to evaluate the exact structure of product nanobiocomposite. The FE-SEM images reveal the presence of spherical shapes exhibiting a narrow size range and homogeneous distribution, measuring between 30 and 35 nm in diameter. The VSM analysis demonstrates the superparamagnetic properties of the XG hydrogel/SF/Fe3O4 nanobiocomposite, exhibiting a magnetic saturation of 54 emu/g at room temperature. The biological response of the nanobiocomposite scaffolds was assessed through cell viability and red blood cell hemolytic assays. MCF10A cells were exposed to a concentration of 1.75 mg/mL of the nanobiocomposite, and after 2 and 3 days, the cell viability was found to be 96.95 % and 97.02 %, respectively. The hemolytic effect was nearly 0 % even at higher concentrations (2 mg/mL). Furthermore, the magnetic nanobiocomposite showed excellent potential for hyperthermia applications, with a maximum specific absorption rate of 7 W/g for 1 mg/mL of the sample under a magnetic field in different frequencies (100, 200, 300, and 400 MHz) and 5 to 20 min time intervals.


Assuntos
Fibroínas , Hipertermia Induzida , Nanocompostos , Hidrogéis/farmacologia , Hidrogéis/química , Fibroínas/farmacologia , Fibroínas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanocompostos/química , Fenômenos Magnéticos
4.
Colloids Surf B Biointerfaces ; 228: 113430, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37418814

RESUMO

Generally, hyperthermia is referred to the composites capability to increase local temperature in such a way that the generated heat would lead to cancerous or bacteria cells destruction, with minimum damage to normal tissue cells. Many different materials have been utilized for hyperthermia application via different heat generating methods. Carbon-based nanomaterials consisting of graphene oxide (GO), carbon nanotube (CNT), carbon dot (CD) and carbon quantum dot (CQD), nanodiamond (ND), fullerene and carbon fiber (CF), have been studied significantly for different applications including hyperthermia due to their biocompatibility, biodegradability, chemical and physical stability, thermal and electrical conductivity and in some cases photothermal conversion. Therefore, in this comprehensive review, a structure-based view on carbon nanomaterials application in hyperthermia therapy of cancer and bacteria via various methods such as optical, magnetic, ultrasonic and radiofrequency-induced hyperthermia is presented.


Assuntos
Hipertermia Induzida , Nanocompostos , Nanotubos de Carbono , Neoplasias , Humanos , Hipertermia Induzida/métodos , Neoplasias/terapia , Temperatura Alta
5.
J Biotechnol ; 367: 71-80, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37028560

RESUMO

In this work, a magnetic nanobiocomposite scaffold based on carboxymethylcellulose (CMC) hydrogel, silk fibroin (SF), and magnetite nanoparticles was fabricated. The structural properties of this new magnetic nanobiocomposite were characterized by various analyses such as FT-IR, XRD, EDX, FE-SEM, TGA and VSM. According to the particle size histogram, most of the particles were between 55 and 77 nm and the value of saturation magnetization of this nanobiocomposite was reported 41.65 emu.g- 1. Hemolysis and MTT tests showed that the designed magnetic nanobiocomposite was compatible with the blood. In addition, the viability percentage of HEK293T normal cells did not change significantly, and the proliferation rate of BT549 cancer cells decreased in its vicinity. EC50 values for HEK293T normal cells after 48 h and 72 h were 3958 and 2566, respectively. Also, these values for BT549 cancer cells after 48 h and 72 h were 0.4545 and 0.9967, respectively. The efficiency of fabricated magnetic nanobiocomposite was appraised in a magnetic fluid hyperthermia manner. The specific absorption rate (SAR) of 69 W/g (for the 1 mg/mL sample at 200 kHz) was measured under the alternating magnetic field (AMF).


Assuntos
Fibroínas , Hipertermia Induzida , Neoplasias , Humanos , Fibroínas/farmacologia , Fibroínas/química , Hidrogéis , Carboximetilcelulose Sódica/farmacologia , Carboximetilcelulose Sódica/química , Espectroscopia de Infravermelho com Transformada de Fourier , Células HEK293 , Fenômenos Magnéticos , Neoplasias/tratamento farmacológico
6.
Carbohydr Polym ; 300: 120246, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372507

RESUMO

This work represents a biocompatible magnetic nanobiocomposite prepared by the composition of chitosan (CS) hydrogel, silk fibroin (SF), graphene oxide (GO), and Fe3O4 NPs. Terephthaloyl thiourea was applied as a cross-linking agent to cross-link the CS strings. The CS hydrogel/SF/GO/Fe3O4 nanobiocomposite with many characteristics, such as high structural uniformity, thermal stability, biocompatibility, and stability in an aqueous solution. Various characteristics of this novel magnetic nanobiocomposite were distinguished by FT-IR, EDX, FE-SEM, XRD, TGA, and VSM analysis. The FE-SEM images were taken to evaluate the size distribution of the magnetic nanoparticles (MNPs) between 39.9 and 73.3 nm as well. The performance of the prepared nanobiocomposite was assessed by the magnetic fluid hyperthermia process. Under the alternating magnetic field (AMF), the mean value of the specific absorption rate (SAR) was determined at 43.15 w/g.


Assuntos
Quitosana , Fibroínas , Hipertermia Induzida , Quitosana/química , Fibroínas/química , Hidrogéis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fenômenos Magnéticos
7.
Int J Biol Macromol ; 224: 1478-1486, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328271

RESUMO

In the current study, sodium alginate (SA) and tannic acid (TA), in the presence of calcium chloride as a cross-linker, were used to fabricate a nanocomposite scaffold. With the addition of silk fibroin (SF), the strength of the synthesized composite was increased. Fe3O4 magnetic nanoparticles (MNPs) led to the usage of this magnetic nanocomposite in hyperthermia applications. Various properties of this scaffold were investigated by field emission scanning electron microscope (FE-SEM), thermogravimetric analysis (TGA), Fourier-transformed infrared (FT-IR), energy dispersive X-Ray (EDX), Vibrating- sample magnetometer (VSM). A hemolytic assay of this magnetic nanocomposite demonstrated that about 100 % of red blood cells (RBCs) survived at a concentration of 2 mg/ml, proving this scaffold is hemocompatible. Furthermore, an MTT assay was utilized to assess the cytotoxicity of the synthesized magnetic nanocomposite. Finally, the hyperthermia behavior of the fabricated magnetic nanocomposite was evaluated, and the specific absorption rate (SAR) was 73.53 W/g. The proposed nanocomposite is a good candidate for wound dressing applications in future studies.


Assuntos
Fibroínas , Hipertermia Induzida , Nanocompostos , Hidrogéis , Alginatos , Espectroscopia de Infravermelho com Transformada de Fourier , Fenômenos Magnéticos
8.
J Therm Biol ; 110: 103371, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462885

RESUMO

Numerical simulation of magnetic nanoparticle hyperthermia for cancer treatment has been investigated in this study. The presented simulation did account for the effects of fluid flow, mass flow, and heat transfer during the MNP hyperthermia. The tumor was assumed to be a porous slab, 30% of which had been necrosed previously, with two capillaries, where magnetic nanoparticles were added into the bloodstream and distributed in the tumor by blood flow through capillaries. Fluid flow, mass transfer by capillaries, and interstitial tissues have been coupled in this study. Furthermore, tumor tissue damage has been calculated using a thermal damage indicator. The goal of this research is to find an optimum injection duration and exposure time in order to maximize hyperthermia treatment effectiveness using the BOBYQA optimization method. At the end of the 1-h time hyperthermia treatment, most of the non-necrotic tissue of the tumor were damaged. Moreover, the fraction of damaged tissue increased to more than 90% in some parts of the tumor. Results of this study indicate that MNP hyperthermia with the proposed setup can effectively damage the tumor in just one session, making it more susceptible to complementary therapies such as radiotherapy or chemotherapy.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Humanos , Nanopartículas de Magnetita/uso terapêutico , Temperatura Alta , Hipertermia
9.
Sci Rep ; 12(1): 15431, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104466

RESUMO

In this study, the main focus was on designing and synthesizing a novel magnetic nanobiocomposite and its application in hyperthermia cancer treatment. Regarding this aim, sodium alginate (SA) hydrogel with CaCl2 cross-linker formed and modified by silk fibroin (SF) natural polymer and halloysite nanotubes (HNTs), followed by in situ Fe3O4 magnetic nanoparticles preparation. No important differences were detected in red blood cells (RBCs) hemolysis, confirming the high blood compatibility of the treated erythrocytes with this nanobiocomposite. Moreover, the synthesized SA hydrogel/SF/HNTs/Fe3O4 nanobiocomposite does not demonstrate toxicity toward HEK293T normal cell line after 48 and 72 h. The anticancer property of SA hydrogel/SF/HNTs/Fe3O4 nanobiocomposites against breast cancer cell lines was corroborated. The magnetic saturation of the mentioned magnetic nanobiocomposite was 15.96 emu g-1. The specific absorption rate (SAR) was measured to be 22.3 W g-1 by applying an alternating magnetic field (AMF). This novel nanobiocomposite could perform efficiently in the magnetic fluid hyperthermia process, according to the obtained results.


Assuntos
Fibroínas , Hipertermia Induzida , Nanocompostos , Nanotubos , Alginatos , Argila , Células HEK293 , Humanos , Hidrogéis , Fenômenos Magnéticos , Nanocompostos/uso terapêutico
10.
J Biotechnol ; 358: 55-63, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36087782

RESUMO

For biotechnology applications, a novel nanobiocomposite was synthesized based on modification of graphene oxide (GO) by extracted silk fibroin (SF), natural polymer pectin (Pec) and zinc chromite (ZnCr2O4) nanoparticles (NPs). The structure and properties of hybrid nanobiocomposite GO-Pec/SF/ZnCr2O4 such as thermal stability, less toxicity, biocompatibility, antibacterial, and biodegradable were proved by using field emission scanning electron microscope (FE-SEM), Fourier-transformed infrared (FT-IR), Energy dispersive X-ray spectroscopy (EDS), thermal gravimetric analysis (TGA), and X-Ray diffraction (XRD). According to the biological features of substances, the GO-Pec/SF/ZnCr2O4 nanobiocomposite shows perfect results in MTT (83.71 %) and Hemolysis (16.52 %) assays. accordingly, mentioned properties of this nanobiocomposite can be used as a scaffold for medical applications.


Assuntos
Fibroínas , Nanocompostos , Nanopartículas , Óxido de Zinco , Antibacterianos/química , Fibroínas/química , Grafite , Nanocompostos/química , Pectinas , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco
11.
Int J Biol Macromol ; 217: 1-18, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35809676

RESUMO

There is a growing demand for biomaterials developing with novel properties for biomedical applications hence, hydrogels with 3D crosslinked polymeric structures obtained from natural polymers have been deeply inspected in this field. Pectin a unique biopolymer found in the cell walls of fruits and vegetables is extensively used in the pharmaceutical, food, and textile industries due to its ability to form a thick gel-like solution. Considering biocompatibility, biodegradability, easy gelling capability, and facile manipulation of pectin-based biomaterials; they have been thoroughly investigated for various potential biomedical applications including drug delivery, wound healing, tissue engineering, creation of implantable devices, and skin-care products.


Assuntos
Materiais Biocompatíveis , Pectinas , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Pectinas/química , Polímeros , Engenharia Tecidual
12.
Int J Biol Macromol ; 192: 7-15, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571124

RESUMO

Natural polymers are at the center of materials development for biomedical and biotechnological applications based on their biocompatibility, low-toxicity and biodegradability. In this study, a novel nanobiocomposite based on cross-linked pectin-cellulose hydrogel, silk fibroin, and Mg(OH)2 nanoparticles was designed and synthesized. After extensive physical-chemical characterization, the biological response of pectin-cellulose/silk fibroin/Mg(OH)2 nanobiocomposite scaffolds was evaluated by cell viability, red blood cells hemolytic and anti-biofilm assays. After 3 days and 7 days, the cell viability of this nanobiocomposite scaffold was 65.5% and 60.5% respectively. The hemolytic effect was below 20%. Furthermore, the presence of silk fibroin and Mg(OH)2 nanoparticles allowed to enhance the anti-biofilm activity, inhibiting the P. aeruginosa biofilm formation.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Fibroínas/química , Hidrogéis/química , Hidróxido de Magnésio/química , Nanopartículas/química , Pectinas/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Nanocompostos/química , Polímeros , Análise Espectral
13.
Int J Biol Macromol ; 140: 407-414, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31425760

RESUMO

In this work, the chemical cross-linked interaction between chitosan polymeric chains and synthetic terephthaloyl diisothiocyanate as a cross-linker was accomplished in order to fabricate three dimensional cross-linked chitosan hydrogel. This cross-linked hydrogel with considerable characteristics including high stability and homogeneity in aqueous solution (water) and high porosity was applied as new substrate for generation of new magnetic terephthaloyl thiourea cross-linked chitosan nanocomposite. The features of this new magnetic nanocomposite were characterized by FT-IR, EDX, FE-SEM, TEM and VSM analysis. The Size distribution of nanoparticles according to the size histogram of FE-SEM images was estimated between 30 and 40 nm. The performance of designed magnetic nanocomposite was evaluated by magnetic fluid hyperthermia procedure. Under the alternating magnetic field (AMF), the specific absorption rate (66.92 w·g-1) was determined and as well, its saturation magnetization value was reported 78.43 emu·g-1.


Assuntos
Quitosana/química , Hidrogéis/química , Nanopartículas de Magnetita/química , Neoplasias/terapia , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Quitosana/síntese química , Quitosana/farmacologia , Humanos , Hidrogéis/síntese química , Hidrogéis/farmacologia , Hipertermia Induzida/métodos , Nanocompostos/química , Ácidos Ftálicos/síntese química , Ácidos Ftálicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Tioureia/síntese química , Tioureia/química
14.
Nanomedicine ; 17: 342-358, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30826476

RESUMO

Nanoflares are intracellular probes consisting of oligonucleotides immobilized on various nanoparticles that can recognize intracellular nucleic acids or other analytes, thus releasing a fluorescent reporter dye. Single-stranded DNA (ssDNA) complementary to mRNA for a target gene is constructed containing a 3'-thiol for binding to gold nanoparticles. The ssDNA "recognition sequence" is prehybridized to a shorter DNA complement containing a fluorescent dye that is quenched. The functionalized gold nanoparticles are easily taken up into cells. When the ssDNA recognizes its complementary target, the fluorescent dye is released inside the cells. Different intracellular targets can be detected by nanoflares, such as mRNAs coding for genes over-expressed in cancer (epithelial-mesenchymal transition, oncogenes, thymidine kinase, telomerase, etc.), intracellular levels of ATP, pH values and inorganic ions can also be measured. Advantages include high transfection efficiency, enzymatic stability, good optical properties, biocompatibility, high selectivity and specificity. Multiplexed assays and FRET-based systems have been designed.


Assuntos
DNA de Cadeia Simples/química , Corantes Fluorescentes/química , Ouro/química , Nanopartículas Metálicas/química , RNA Mensageiro/análise , Trifosfato de Adenosina/análise , Animais , Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/genética , Neoplasias/diagnóstico , Neoplasias/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA