Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35763349

RESUMO

Current treatments fail to modify the underlying pathophysiology and disease progression of chronic obstructive pulmonary disease (COPD), necessitating alternative therapies. Here, we show that COPD subjects have increased IL-36γ and decreased IL-36 receptor antagonist (IL-36Ra) in bronchoalveolar and nasal fluid compared with control subjects. IL-36γ is derived from small airway epithelial cells (SAEC) and is further induced by a viral mimetic, whereas IL-36Ra is derived from macrophages. IL-36γ stimulates release of the neutrophil chemoattractants CXCL1 and CXCL8, as well as elastolytic matrix metalloproteinases (MMPs) from small airway fibroblasts (SAF). Proteases released from COPD neutrophils cleave and activate IL-36γ, thereby perpetuating IL-36 inflammation. Transfer of culture media from SAEC to SAF stimulated release of CXCL1, which was inhibited by exogenous IL-36Ra. The use of a therapeutic antibody that inhibits binding to the IL-36R attenuated IL-36γ-driven inflammation and cellular crosstalk. We have demonstrated a mechanism for the amplification and propagation of neutrophilic inflammation in COPD and have shown that blocking this cytokine family via a IL-36R neutralizing antibody could be a promising therapeutic strategy in the treatment of COPD.


Assuntos
Interleucina-1 , Doença Pulmonar Obstrutiva Crônica , Receptores de Interleucina/agonistas , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-1/metabolismo , Interleucinas/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
2.
PLoS One ; 9(10): e110396, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329595

RESUMO

BACKGROUND: Parenteral nutrition (PN) has been a life-saving treatment in infants intolerant of enteral feedings. However, PN is associated with liver injury (PN Associated Liver Injury: PNALI) in a significant number of PN-dependent infants. We have previously reported a novel PNALI mouse model in which PN infusion combined with intestinal injury results in liver injury. In this model, lipopolysaccharide activation of toll-like receptor 4 signaling, soy oil-derived plant sterols, and pro-inflammatory activation of Kupffer cells (KCs) played key roles. The objective of this study was to explore changes in the intestinal microbiome associated with PNALI. METHODOLOGY AND PRINCIPAL FINDINGS: Microbiome analysis in the PNALI mouse identified specific alterations within colonic microbiota associated with PNALI and further association of these communities with the lipid composition of the PN solution. Intestinal inflammation or soy oil-based PN infusion alone (in the absence of enteral feeds) caused shifts within the gut microbiota. However, the combination resulted in accumulation of a specific taxon, Erysipelotrichaceae (23.8% vs. 1.7% in saline infused controls), in PNALI mice. Moreover, PNALI was markedly attenuated by enteral antibiotic treatment, which also was associated with significant reduction of Erysipelotrichaceae (0.6%) and a Gram-negative constituent, the S24-7 lineage of Bacteroidetes (53.5% in PNALI vs. 0.8%). Importantly, removal of soy oil based-lipid emulsion from the PN solution resulted in significant reduction of Erysipelotrichaceae as well as attenuation of PNALI. Finally, addition of soy-derived plant sterol (stigmasterol) to fish oil-based PN restored Erysipelotrichaceae abundance and PNALI. CONCLUSIONS: Soy oil-derived plant sterols and the associated specific bacterial groups in the colonic microbiota are associated with PNALI. Products from these bacteria may directly trigger activation of KCs and promote PNALI. Furthermore, the results indicate that lipid modification of PN solutions may alter specific intestinal bacterial species associated with PNALI, and thus suggest strategies for management of PNALI.


Assuntos
Intestinos/microbiologia , Fígado/lesões , Fígado/microbiologia , Microbiota , Nutrição Parenteral/efeitos adversos , Animais , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/imunologia , Inflamação/microbiologia , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Células de Kupffer/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/imunologia , Masculino , Camundongos , Óleos de Plantas/farmacologia , Glycine max/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA