Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(18): 26760-26772, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38459283

RESUMO

Environmental and occupational exposure to hexavalent chromium (CrVI) is mostly renowned as a possible hepatotoxic in mammals. Echinacea purpurea (L.) Moench, a phenolic-rich plant, is recurrently used for its therapeutic properties. Therefore, this investigation was done to explore whether E. purpurea (EP) root extract would have any potential health benefits against an acute dose of CrVI-induced oxidative damage and hepatotoxicity. Results revealed that GC-MS analysis of EP root extract has 26 identified components with a significant amount of total phenolic and flavonoid contents. Twenty-four Male Wistar rats were divided into four groups: control, EP (50 mg/kg BW/day for 21 days), CrVI (15 mg/kg BW as a single intraperitoneal dosage), and EP + CrVI, respectively. Rats treated with CrVI displayed a remarkable rise in oxidative stress markers (TBARS, H2O2, PCC), bilirubin, and lactate dehydrogenase activity, and a marked decrease in enzymatic and non-enzymatic antioxidants, transaminases, and alkaline phosphatase activities, and serum protein level. Also, CrVI administration induced apoptosis and inflammation in addition to histological and ultrastructural abnormalities in the liver tissue. The examined parameters were improved significantly in rats pretreated with EP and then intoxicated with CrVI. Conclusively, EP had a potent antioxidant activity and could be used in the modulation of CrVI-induced hepatotoxicity.


Assuntos
Cromo , Echinacea , Estresse Oxidativo , Extratos Vegetais , Ratos Wistar , Animais , Estresse Oxidativo/efeitos dos fármacos , Cromo/toxicidade , Extratos Vegetais/farmacologia , Ratos , Echinacea/química , Masculino , Fígado/efeitos dos fármacos , Raízes de Plantas
2.
Tissue Cell ; 87: 102321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350206

RESUMO

The prevalent use of abamectin (ABM) has latterly raised safety attention as it has different toxicities to non-target living organisms. Citrus fruits are widely renowned for their nutritional and health-promoting qualities, and their peels are full of phenolic constituents. The purpose of the current study was to evaluate the modulatory effectiveness of Citrus reticulata peel extract (CPE) against abamectin-induced hepatotoxicity and oxidative injury. Rats were distributed into 4 groups as follows: control, CPE (400 mg/kg bw orally for 14 days), ABM (2 mg/kg bw for 5 days), and CPE + ABM at the doses mentioned above. Results revealed that GC-MS analysis of CPE has 19 identified components with significant total phenolic and flavonoid contents. Treatment with ABM in rats displayed significant variations in enzymatic and non-enzymatic antioxidants, oxidative stress markers (MDA, H2O2, PCC), liver and kidney function biomarkers, hematological parameters, lipids, and protein profile as well as histopathological abnormalities, inflammation and apoptosis (TNF-α, Caspase-3, NF-κB, and Bcl-2 genes) in rats' liver. Supplementation of CPE solo dramatically improved the antioxidant state and reduced oxidative stress. C. reticulata peel extract pretreatment alleviated ABM toxicity by modulating most of the tested parameters compared to the ABM group. Conclusively, CPE had potent antioxidant activity and could be used in the modulation of ABM hepatotoxicity presumably due to its antioxidant, anti-inflammatory, and gene-regulating capabilities.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Citrus , Ivermectina/análogos & derivados , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Fígado/patologia , Citrus/metabolismo , Extratos Vegetais/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
3.
Biomed Pharmacother ; 170: 116083, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163395

RESUMO

As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.


Assuntos
Nanopartículas Metálicas , Extratos Vegetais , Humanos , Extratos Vegetais/química , Química Verde , Plantas , Medicina Tradicional , Nanopartículas Metálicas/química , Atenção à Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA