Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 78, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475853

RESUMO

The biosynthetic potency of Taxol by fungi raises their prospective to be a platform for commercial production of Taxol, nevertheless, the attenuation of its productivity with the fungal storage, is the challenge. Thus, screening for a novel fungal isolate inhabiting ethnopharmacological plants, with a plausible metabolic stability for Taxol production could be one of the most affordable approaches. Aspergillus niger OR414905.1, an endophyte of Encephalartos whitelockii, had the highest Taxol productivity (173.9 µg/L). The chemical identity of the purified Taxol was confirmed by HPLC, FTIR, and LC-MS/MS analyses, exhibiting the same molecular mass (854.5 m/z) and molecular fragmentation pattern of the authentic Taxol. The purified Taxol exhibited a potent antiproliferative activity against HepG-2, MCF-7 and Caco-2, with IC50 values 0.011, 0.016, and 0.067 µM, respectively, in addition to a significant activity against A. flavus, as a model of human fungal pathogen. The purified Taxol displayed a significant effect against the cellular migration of HepG-2 and MCF-7 cells, by ~ 52-59% after 72 h, compared to the control, confirming its interference with the cellular matrix formation. Furthermore, the purified Taxol exhibited a significant ability to prompt apoptosis in MCF-7 cells, by about 11-fold compared to control cells, suppressing their division at G2/M phase. Taxol productivity by A. niger has been optimized by the response surface methodology with Plackett-Burman Design and Central Composite Design, resulting in a remarkable ~ 1.6-fold increase (279.8 µg/L), over the control. The biological half-life time of Taxol productivity by A. niger was ~ 6 months of preservation at 4 â„ƒ, however, the Taxol yield by A. niger was partially restored in response to ethyl acetate extracts of E. whitelockii, ensuring the presence of plant-derived signals that triggers the cryptic Taxol encoding genes.


Assuntos
Aspergillus , Paclitaxel , Zamiaceae , Humanos , Aspergillus niger , Endófitos/metabolismo , Células CACO-2 , Cromatografia Líquida , Estudos Prospectivos , Espectrometria de Massas em Tandem , Ciclo Celular
2.
Microb Cell Fact ; 23(1): 15, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183118

RESUMO

Attenuation of camptothecin (CPT) productivity by fungi with preservation and subculturing is the challenge that halts fungi to be an industrial platform of CPT production. Thus, screening for novel endophytic fungal isolates with metabolic stability for CPT production was the objective. Catharanthus roseus is one of the medicinal plants with diverse bioactive metabolites that could have a plethora of novel endophytes with unique metabolites. Among the endophytes of C. roseus, Aspergillus terreus EFBL-NV OR131583.1 had the most CPT producing potency (90.2 µg/l), the chemical identity of the putative CPT was verified by HPLC, FT-IR, NMR and LC-MS/MS. The putative A. terreus CPT had the same molecular mass (349 m/z), and molecular fragmentation patterns of the authentic one, as revealed from the MS/MS analyses. The purified CPT had a strong activity against MCF7 (5.27 µM) and UO-31 (2.2 µM), with a potential inhibition to Topo II (IC50 value 0.52 nM) than Topo 1 (IC50 value 6.9 nM). The CPT displayed a high wound healing activity to UO-31 cells, stopping their metastasis, matrix formation and cell immigration. The purified CPT had a potential inducing activity to the cellular apoptosis of UO-31 by ~ 17 folds, as well as, arresting their cellular division at the S-phase, compared to the control cells. Upon Plackett-Burman design, the yield of CPT by A. terreus was increased by ~ 2.6 folds, compared to control. The yield of CPT by A. terreus was sequentially suppressed with the fungal storage and subculturing, losing ~ 50% of their CPT productivity by 3rd month and 5th generation. However, the productivity of the attenuated A. terreus culture was completely restored by adding 1% surface sterilized leaves of C. roseus, and the CPT yield was increased over-the-first culture by ~ 3.2 folds (315.2 µg/l). The restoring of CPT productivity of A. terreus in response to indigenous microbiome of C. roseus, ensures the A. terreus-microbiome interactions, releasing a chemical signal that triggers the CPT productivity of A. terreus. This is the first reports exploring the potency of A. terreus, endophyte of C. roseus" to be a platform for industrial production of CPT, with an affordable sustainability with addition of C. roseus microbiome.


Assuntos
Catharanthus , Cromatografia Líquida , Endófitos , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem , Isomerases , Camptotecina/farmacologia , Ciclo Celular
3.
Microb Cell Fact ; 22(1): 143, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37533061

RESUMO

Fungal producing potency of camptothecin (CPT) raise the hope for their usage to be a platform for industrial production of CPT, nevertheless, attenuation of their productivity of CPT with the subculturing and preservation is the challenge. So, screening for novel endophytic fungal isolates with a reliable CPT-biosynthetic stability was the objective. Among the isolated endophytic fungi from the tested medicinal plants, Aspergillus terreus OQ642314.1, endophyte of Cinnamomum camphora, exhibits the highest yield of CPT (89.4 µg/l). From the NMR, FT-IR and LC-MS/MS analyses, the extracted CPT from A. terreus gave the same structure and molecular mass fragmentation pattern of authentic CPT (349 m/z). The putative CPT had a significant activity against MCF7 (0.27 µM) and HEPG-2 (0.8 µM), with a strong affinity to inhibits the human Topoisomerase 1 activity (IC50 0.362 µg/ml) as revealed from the Gel-based DNA relaxation assay. The purified CPT displayed a strong antimicrobial activity for various bacterial (E. coli and B. cereus) and fungal (A. flavus and A. parasiticus) isolates, ensuring the unique tertiary, and stereo-structure of A. terreus for penetrating the microbial cell walls and targeting the topoisomerase I. The higher dual activity of the purified CPT as antimicrobial and antitumor, emphasize their therapeutic efficiency, especially with growth of the opportunistic microorganisms due to the suppression of human immune system with the CPT uses in vivo. The putative CPT had an obvious activity against the tumor cell (MCF7) metastasis, and migration as revealed from the wound healing assay. The overall yield of A. terreus CPT was maximized with the Blackett-Burman design by twofolds increment (164.8 µg/l). The CPT yield by A. terreus was successively diminished with the multiple fungal subculturing, otherwise, the CPT productivity of A. terreus was restored, and increased over the zero culture upon coculturing with C. camphora microbiome (1.5% w/v), ensuring the restoring of CPT biosynthetic potency of A. terreus by the plant microbiome-derived chemical signals "microbial communication". This is the first report exploring the feasibility of A. terreus "endophyte of C. camphora" to be a preliminary platform for commercial production of CPT with a reliable sustainability upon uses of indigenous C. camphora microbiome.


Assuntos
Anti-Infecciosos , Cinnamomum camphora , Microbiota , Humanos , Endófitos/química , Cromatografia Líquida , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem , Camptotecina/farmacologia , Camptotecina/química
4.
Microb Cell Fact ; 22(1): 4, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609265

RESUMO

The metabolic potency of fungi as camptothecin producer elevates their prospective use as an industrial platform for commercial production, however, the loss of camptothecin productivity by fungi with the storage and subculturing are the major obstacle. Thus, screening for endophytic fungal isolates inhabiting ethnopharmacological plants with an obvious metabolic stability and sustainability for camptothecin biosynthesis could be one of the most feasible paradigms. Aspergillus terreus ON908494.1, an endophyte of Cestrum parqui was morphologically and molecularly verified, displaying the most potent camptothecin biosynthetic potency. The chemical identity of A. terreus camptothecin was confirmed from the HPLC, FTIR and LC-MS/MS analyses, gave the same molecular structure and mass fragmentation patterns of authentic one. The purified putative camptothecin displayed a strong anticancer activity towards HepG-2 and MCF-7 with IC50 values 0.96 and 1.4 µM, respectively, with no toxicity to OEC normal cells. As well as, the purified camptothecin displayed a significant antifungal activity towards fungal human pathogen Candida albicans, Aspergillus flavus, and A. parasiticus, ensuring the unique structural activity relationships of A. terreus camptothecin, as a powerful dually active anticancer and antimicrobial agent. The camptothecin productivity of A. terreus was maximized by bioprocessing with Plackett-Burman design, with an overall 1.5 folds increment (170.5 µg/L), comparing to control culture. So, the optimal medium components for maximum yield of camptothecin by A. terreus was acid why (2.0 mL/L), Diaion HP20 (2.0 g/L), Amberlite XAD (2.0 g/L), dextrin (5.0 g/L), glucose (10.0 g/L), salicylic acid (2.0 g/L), serine (4.0 g/L), cysteine (4.0 g/L) and glutamate (10.0 g/L), at pH 6 for 15 days incubation. By the 5th generation of A. terreus, the camptothecin yield was reduced by 60%, comparing to zero culture. Interestingly, the productivity of camptothecin by A. terreus has been completely restored and over increased (210 µg/L), comparing to the 3rd generation A. terreus (90 µg/L) upon addition of methanolic extracts of Citrus limonum peels, revealing the presence of some chemical signals that triggers the camptothecin biosynthetic machinery. The feasibility of complete restoring of camptothecin biosynthetic-machinery of A. terreus for stable and sustainable production of camptothecin, pave the way for using this fungal isolate as new platform for scaling-up the camptothecin production.


Assuntos
Camptotecina , Cestrum , Humanos , Camptotecina/farmacologia , Camptotecina/metabolismo , Endófitos/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem
5.
Appl Biochem Biotechnol ; 194(8): 3558-3581, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35438406

RESUMO

Taxol production by fungi is one of the promising alternative approaches, regarding to the natural and semisynthetic sources; however, the lower yield and rapid loss of Taxol productivity by fungi are the major challenges that halt their further industrial implementation. Thus, searching for fungal isolates with affordable Taxol-production stability, in addition to enhance its anticancer activity via conjugation with gold nanoparticles, is the main objectives of this study. Twenty-four endophytic fungal isolates were recovered from the barks, twigs, and leaves of jojoba plant, among these fungi, Aspergillus flavus MW485934.1 was the most potent Taxol producer (88.6 µg/l). The chemical identity of the extracted Taxol of A. flavus was verified by the TLC, HPLC, HNMR, and FTIR analyses. The yield of Taxol produced by A. flavus was optimized by the response surface methodology (RSM) using Plackett-Burman (PBD) and faced central composite designs (FCCD). The yield of Taxol by A. flavus was increased by about 3.2 folds comparing to the control cultures (from 96.5 into 302.7 µg/l). The highest Taxol yield by was obtained growing A. flavus on a modified malt extract medium (g/l) (malt extract 20.0, peptone 2.0, sucrose 20.0, soytone 2.0, cysteine 0.5, glutamine 0.5, and beef extract 1.0 adjusted to pH 6.0) and incubated at 30 °C for 16 days. From the FCCD design, the significant variables affecting Taxol production by A. flavus were cysteine, pH, and incubation time. Upon A. flavus γ-irradiation at 1.0 kGy, the Taxol yield was increased by about 1.25 fold (375.9 µg/l). To boost its anticancer activity, the purified Taxol was conjugated with gold nanoparticles (AuNPs) mediated by γ-rays irradiation (0.5 kGy), and the physicochemical properties of Taxol-AuNPs composite were evaluated by UV-Vis, DLS, XRD, and TEM analyses. The IC50 values of the native-Taxol and Taxol-AuNPs conjugates towards HEPG-2 cells were 4.06 and 2.1 µg/ml, while the IC50 values against MCF-7 were 6.07 and 3.3 µg/ml, respectively. Thus, the anticancer activity of Taxol-AuNPs composite was increased by 2 folds comparing to the native Taxol towards HEPG-2 and MCF-7 cell lines. Also, the antimicrobial activity of Taxol against the multidrug resistant bacteria was dramatically increased upon conjugation with AuNPs comparing to authentic AuNPs and Taxol, ensuring the higher solubility, targetability, and efficiency of Taxol upon AuNPs conjugation.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Aspergillus flavus , Bovinos , Cisteína , Endófitos , Nanopartículas Metálicas/química , Paclitaxel/farmacologia , Extratos Vegetais
6.
Molecules ; 26(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920949

RESUMO

Mycotoxigenic fungi have attracted special attention due to their threat to food security and toxicity to human health. Aqueous extract of Zingiber officinale Roscoe was used as reducing and capping agent for the synthesis of silver (AgNPs), copper (CuNPs), and zinc oxide (ZnONPs) nanoparticles. UV-Visible spectra of the AgNPs, CuNPs, and ZnONPs showed absorption peaks at λmax 416 nm, 472 nm, and 372 nm, respectively. Zeta potential of AgNPs, CuNPs, and ZnONPs were -30.9, -30.4 and -18.4 mV, respectively. ZnONPs showed the highest activity against Aspergillus awamori ZUJQ 965830.1 (ZOI 20.9 mm and MIC 24.7 µg/mL). TEM micrographs of ZnONPs-treated A. awamori showed cracks and pits in the cell wall, liquefaction of the cytoplasmic content, making it less electron-dense. The sporulation and ochratoxin A production of A. awamori was inhibited by ZnONPs in a concentration-dependent pattern. The inhibition percentage of OTA were 45.6, 84.78 and 95.65% for 10, 15, 20 of ZnONPs/mL, respectively.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Zingiber officinale/química , Aspergillus/efeitos dos fármacos , Ocratoxinas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Óxido de Zinco/química
7.
Enzyme Microb Technol ; 143: 109718, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33375978

RESUMO

Epothilones are secondary metabolites produced by Sorangium cellulosum with powerful antiproliferative activity against tumor cells by stabilizing their microtubule arrays, arresting their cellular division at G2-M phase. Unfortunately, the lower yield of epothilone is the challenge for its higher accessibility, thus, searching for alternative sources with promising epothilone producing potency is the prospective. Endophytic fungi are the potential repertoire for bioactive metabolites, thus exploring the epothilone producing potency of endophytic fungi of medicinal plants was objective. Thirty-two fungal isolates were recovered from the tested medicinal plants and their potency to produced epothilone have been assessed using the TLC, HPLC and molecular markers epoA, epoC and epoK. Aspergillus fumigatus EFBL, an endophyte of Catharanthus roseus, was the potent epothilone producer (21.5 µg/g biomass) as revealed from the chromatographic analyses and PCR of molecular markers. The chemical identity of extracted epothilone was verified from the HPLC, NMR, FTIR and LC-MS analyses as epothilone B analogue. The putative epoA gene from A. fumigatus was amplified using RT-PCR with the conservative corresponding primers to the active-sites of S. cellulosum. The amplicons of epoA was 517 bp displayed 98 % similarity with A. fumigatus PKS-NRPS domains, and 40 % similarity with epoA of S. cellulosum. From the in silico analyses, Val506, Ala605 and Ser630 are the conservative amino acids of epoA protein of A. fumigatus and S. cellulosum. Epothilone B from A. fumigatus displayed a strong antiproliferative activity against HepG-2, MCF-7 and LS174 T as revealed from the IC50 values 6.4, 8.7 and 10.21 µM, respectively. The productivity of epothilone B from A. fumigatus was optimized by surface response methodology with Plackett-Burman and Faced Centered Central Composite. With the Plackett-Burman design, the yield of epothilone (54.4-60.1 µg/g biomass) by A. fumigatus was increased by about 2.8-3.0 folds comparing to non-optimized cultures (21.5 µg/ g biomass). From the FCCD design, sucrose, tryptone and incubation time being the highest significant variables medium components affecting the epothilone yield of A. fumigatus. This is the first report exploring the feasibility of endophytic fungi for epothilone producing potency, that could be a novel platform for industrial production of epothilone.


Assuntos
Catharanthus , Epotilonas , Aspergillus fumigatus/genética , Endófitos/genética , Estudos Prospectivos
8.
J Basic Microbiol ; 49(4): 331-41, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19455514

RESUMO

Solid-state fermentation was carried out for the production of extra-cellular L-methioninase by Aspergillus flavipes (Bain and Sart.) using nine agro-industrial residues, namely wheat bran, rice bran, wheat flour, coconut seeds, cotton seeds, ground nut cake, lentil hulls, soya beans and chicken feathers. Chicken feathers were selected as solid substrate for L-methioninase production by A. flavipes. The maximum L-methioninase productivity (71.0 U/mg protein) and growth (11 mg protein/ml) of A. flavipes was obtained using alkali pretreated chicken feathers of 50% initial moisture content as substrate supplemented with D-glucose (1.0% w/v) and L-methionine (0.2% w/v). External supplementation of the fermentation medium with various vitamin sources has no overinductive effect on L-methioninase biosynthesis. The partially purified A. flavipes L-methioninase preparation showed highest activity (181 U/ml) at pH 8.0 with stability over a pH range (pH 6-8) for 2 h. L-methioninase activity was increased by preincubation of the enzyme for 2 h with Co(2+), Mn(2+), Cu(2+) and Mg(2+) and strongly inhibited by the presence of EDTA, NaN(3), Li(2+), Cd(2+), DMSO and 2-mercaptoethanol. The enzyme preparation has a broad substrate spectrum showing a higher affinity to deaminate L-glycine, N -acetylglucosamine and glutamic acid, in addition to their proteolytic activity against bovine serum albumin, casein, gelatin and keratin. The partially purified enzyme was found to be glyco-metalloproteinic in nature as concluded from the analytical and spectroscopic profiles of the enzyme preparation. The demethiolating activity of the enzyme was also visualized chromogenially.


Assuntos
Aspergillus/enzimologia , Liases de Carbono-Enxofre/biossíntese , Fermentação , Microbiologia Industrial , Biomassa , Meios de Cultura , Proteínas Fúngicas/biossíntese , Especificidade por Substrato
9.
Curr Microbiol ; 58(3): 219-26, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19048340

RESUMO

Findings show 21 fungal isolates belonging to eight genera recovered from Egyptian soils that have the potential to attack L-methionine under submerged conditions. Aspergillus flavipes had the most methioninolytic activity, giving the highest yield of L-methioninase (10.78 U/mg protein), rate of methionine uptake (93.0%), and growth rate (5.0 g/l), followed by Scopulariopsis brevicaulis and A. carneus. The maximum L-methioninase productivity (11.60 U/mg protein) by A. flavipes was observed using L-methionine (0.8%) as an enzyme-inductive agent and glucose (1%) as a co-dissimilated carbon source. A significant reduction in L-methioninase biosynthesis by A. flavipes was detected using carbon-free medium, suggesting the lack of ability to use L-methionine as a carbon and nitrogen source. Potassium dihydrogen phosphate (0.25%), the best source of phosphorus, favors enzyme biosynthesis and enhances the level of methionine uptake by A. flavipes. The maximum L-methioninase productivity (12.58 U/mg protein) and substrate uptake (95.6%) were measured at an initial pH of 7.0.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Técnicas de Cultura , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Fungos/isolamento & purificação , Microbiologia do Solo , Aspergillus/enzimologia , Aspergillus/isolamento & purificação , Aspergillus/metabolismo , Biomassa , Carbono/metabolismo , Liases de Carbono-Enxofre/genética , Meios de Cultura/metabolismo , Fermentação , Proteínas Fúngicas/genética , Fungos/metabolismo , Metionina/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo
10.
Indian J Microbiol ; 49(3): 243-50, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23100777

RESUMO

Solid state fermentation was conducted for the production of L-glutaminase by Trichoderma koningii Oud.aggr. using different agro-industrial byproducts inlcuding wheat bran, groundnut residues, rice hulls, soya bean meal, corn steep, sesamum oil cake, cotton seed residues and lentil industrial residues as solid substrates. Wheat bran was the best substrate for induction of L-glutaminase (12.1 U/mg protein) by T. koningii. The maximum productivity (23.2 U/mg protein) and yield (45.0 U/gds) of L-glutaminase by T. koningii occurred using wheat bran of 70% initial moisture content, initial pH 7.0, supplemented with D-glucose (1.0%) and L-glutamine (2.0% w/v), inoculated with 3 ml of 6 day old fungal culture and incubated at 30°C for 7 days. After optimization, the productivity of L-glutaminase by the solid cultures of T. koningii was increased by 2.2 fold regarding to the submerged culture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA