Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Ethnopharmacol ; 326: 117942, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395180

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill. (IG) is a multipurpose tree native to tropical Africa such as Equatorial Guinea, Nigeria, Gabon, and Cameroon with high ethnomedicinal values. AIM OF THE STUDY: This review emphasizes the ethnopharmacological significance, phytochemical, and functional properties of African mango, focusing on its potential for human health and industrial applications. MATERIALS AND METHODS: Literature published on IG was traced by different databases, including the Egyptian Knowledge Bank database (EKB), ScienceDirect, PubMed, Google Scholars, Research Gate, Web of Science, Elsevier, and Scopus. Numerous keywords were used to achieve an inclusive search in the databases, like 'African Mango', 'Bush Mango', 'Irvingia gabonensis', 'Wild Mango', 'Dika Nut', 'Phytochemistry', 'Traditional uses', 'Functional foods', 'Polyphenols', 'Ogbono', 'Ellagic acid and its derivatives', and 'Pharmacological activities'. RESULTS: Different parts of IG have been employed in traditional medicine and recorded a great success. The ripe fruit pulp was consumed fresh or processed into juice and wine documented for anti-diarrheal, anti-diabetic, anti-ulcer, hepatoprotective, antimicrobial, and anti-inflammatory properties. The kernels, which are widely traded and incorporated into traditional dishes, remain an integral part of culinary traditions. Seeds have folkloric uses for weight loss and are popular as blood thinners and anti-diabetics. Where the bark is reported for dysentery, colic, scabies, toothache, and various skin conditions. In Senegal, the stem bark is employed for gonorrhea, hepatic disorders, and gastrointestinal ailments. The leaves possess the potential to enhance renal and hepatic functions, safeguarding these vital organs against the detrimental effects of toxic substances. Pulp is rich in vitamin C, carbohydrates, and proteins. Oil is the major constituent of the seed, which is mainly composed of myristic and lauric acids. The defatted extracts are characterized by flavonoid glycosides and ellagic acid derivatives. Despite their widespread use, IG extracts are still inadequately characterized phytochemically and merit further investigation within the realm of scientific research. Encouragingly, toxicity studies have demonstrated the relative safety of IG extract at the administered doses. CONCLUSION: The review extends our knowledge of the health benefits of IG, where these effects could be attributed to the phytochemicals present.


Assuntos
Celulose , Mangifera , Humanos , Ácido Elágico , Etnofarmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Camarões , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
2.
J Ethnopharmacol ; 326: 117911, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38355028

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dolomiaea costus (Falc.), formerly Saussurea costus (Falc.) Lipsch., an ayurvedic medicinal plant, has long been recognized and utilized in diverse indigenous systems of medicine for its multifaceted therapeutic properties, including anti-inflammatory, carminative, expectorant, antiarthritic, antiseptic, aphrodisiac, anodyne, and antidiabetic effects. AIM OF THE STUDY: The potential and underlying mechanisms of D. costus root as an antidiabetic agent were investigated in this study. Additionally, the quantification of phenolic and flavonoid compounds, which dominate the extracts, was of particular interest in order to elucidate their contribution to the observed effects. MATERIALS AND METHODS: High-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was employed to analyze the chemical constituents in D. costus root aqueous extract (DCA) and D. costus root ethanolic extract (DCE). Furthermore, the inhibitory potentials of DCE and its respective fractions as well as DCA against α-amylase, α-glucosidase, and lipase enzymes were assessed. Subsequently, the efficacy of DCA and DCE extracts was evaluated using an established streptozotocin (STZ)-induced diabetic animal model; this involved administering the extracts at doses of 200 and 400 mg/kg bwt. and comparing them with a positive control (glibenclamide (Glib.) at 0.6 mg/kg bwt.). After induction of diabetes (except for negative control), all animals received the treatments orally for 21 days consecutively, followed by the collection of rat serum to assess various parameters including, glycemic and lipid profiles, liver and kidney functions, antioxidant activity, glycolysis, and gluconeogenesis pathways. RESULTS: The results of HPLC-ESI-MS/MS revealed that isochlorogenic acid A (8393.64 µg/g) and chlorogenic acid (6532.65 µg/g) were the predominant compounds in DCE and DCA, respectively. Both extracts exhibited notable antidiabetic properties, as evidenced by their ability to regulate blood glycemic and lipid profiles (glucose, insulin, HBA1C; HDL, TC, TGs), liver enzymes (ALT, ALP, AST), kidney function (urea, creatinine, uric acid), oxidative stress biomarkers (MDA), antioxidant enzymes (CAT, GSH, SOD), as well as glycolysis (glucokinase) and gluconeogenesis (G-6-P, FBP1) pathways. CONCLUSIONS: Furthermore, the administration of D. costus extracts significantly mitigated STZ-induced diabetic hyperglycemia. These results can be attributed, at least partially, to the presence of several polyphenolic compounds with potent antioxidant and anti-inflammatory activities.


Assuntos
Costus , Diabetes Mellitus Experimental , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Estreptozocina , Costus/química , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Metabolismo dos Carboidratos , Anti-Inflamatórios/farmacologia , Lipídeos/uso terapêutico , Glicemia
3.
J Ethnopharmacol ; 324: 117747, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38218500

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill., also known as "African mango" or "bush mango", belonging to family Irvingiaceae, has been mostly used as food and traditional medicine for weight loss and to enhance the health. AIM OF THE STUDY: The overconsumption of high-fat and high-carbohydrate (HFHC) food induces oxidative stress, leading to neurological and cognitive dysfunction. Consequently, there is an immediate need for effective treatment. Hence, this study explored the efficacy of orlistat, metformin, and I. gabonensis seeds' total aqueous extract (IG SAE) in addressing HFHC-induced cognitive impairment by mitigating oxidative stress and their underlying mechanistic pathways. MATERIALS AND METHODS: Initially, the secondary metabolite profile of IG SAE is determined using high-performance liquid chromatography coupled with a mass detector (UHPLC/MS). The in vivo study involves two phases: an established model phase with control (10 rats on a standard diet) and HFHC diet group (50 rats) for 3 months. In the study phase, HFHC is divided into 5 groups. The first subgroup receives HFHC diet only, while the remaining groups each receive HFHC diet with either Orlistat, metformin, or IG SAE at doses of 100 mg/kg and 200 mg/kg, respectively, for 28 days. RESULTS: More than 150 phytoconstituents were characterized for the first holistic approach onto IG metabolome. Characterization of IG SAE revealed that tannins dominate metabolites in the plant. Total phenolics and flavonoids were estimated to standardize our extract (77.12 ± 7.09 µg Gallic acid equivalent/mg extract and 8.039 ± 0.53 µg Rutin equivalent/mg extract, respectively). Orlistat, metformin, and IG SAE successfully reduced the body weight, blood glucose level, lipid profile, oxidative stress and neurotransmitters levels leading to improved behavioral functions as well as histological alternation. Also, IG SAE halted inflammation, apoptosis, and endoplasmic reticulum stress, together with promoting autophagy, via modulation of PI3K/AKT/GSK-3ß/CREB, PERK/CHOP/Bcl-2 and AMPK/SIRT-1/m-TOR pathways. CONCLUSION: Metformin, orlistat, and IG SAE offer a promising multi-target therapy to mitigate HFHC diet-induced oxidative stress, addressing cognitive function. This involves diverse molecular mechanisms, particularly the modulation of inflammation, ER stress, and both PI3K/AKT/GSK-3ß/CREB and AMPK/SIRT-1/m-TOR pathways. Furthermore, the higher dose of IG SAE demonstrated effects comparable to orlistat and metformin across most studied parameters.


Assuntos
Disfunção Cognitiva , Mangifera , Metformina , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Orlistate , Serina-Treonina Quinases TOR/metabolismo , Sementes/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Inflamação , Metaboloma , Dieta
4.
J Ethnopharmacol ; 321: 117566, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081395

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Euphorbia plants have long been used as traditional medicine in China, Europe, America, Turkey, India, Africa, Iran, and Pakistan because of its high medicinal value and health advantages especially as a remedy for several types of cancer. AIM OF THE STUDY: Doxorubicin (DOX) is one of the most frequently prescribed drugs in cancer chemotherapy, with dose-limiting cardiotoxicity. The development of medicinal approaches to attenuate drug's toxicity represents an area of great concern in cancer research. Because research on this topic is still disputed and limited, we aim to investigate the potential of supplementation with Euphorbia grantii Oliv. on DOX-induced cardiomyopathy in Ehrlich carcinoma bearing mice. MATERIALS AND METHODS: The high-performance thin layer chromatography (HPTLC) analysis of total methanolic extract (TE), and its bioactive dichloromethane fraction (DCMF) was applied for the determination of friedelin. Male BALB/c mice were used to keep the Ehrlich ascites tumor cells. The experiment was performed for a 2-weeks period. RESULTS: A good linearity relationship was found to be with correlation coefficient (r2) value of 0.9924 for the isolated friedelin. Limit of detection (LOD) and limit of quantitation (LOQ) was found to be 0.00179, and 0.000537 ng/band respectively for friedelin. The amount of friedelin in the TE and DCMF were determined by using calibration curve of standard as 106.32 ± 5.69 µg, and 159.2 ± 4.24 µg friedelin/mg extract, respectively. DOX-induced cardiomyopathy by decreasing the ejection fraction (EF) compared to the Ehrlich and negative control groups. It resulted in a decrease in the EF by 30 and 39% compared to the other groups. High and low doses of the TE and DCMF did not result in significantly different ejection fractions compared to the Ehrlich group. Co-administration of DCMF with DOX ameliorated the alteration in the serum CKMB and LDH levels. As revealed from histopathological study, DOX impairs viability of cardiac myocytes and DCMF could effectively and extensively counteract this action of DOX and potentially protect the heart from severe toxicity of DOX. CONCLUSIONS: Finally, our results indicated that Euphorbia grantii Oliv. would be the best option to reduce DOX adverse effects.


Assuntos
Carcinoma de Ehrlich , Cardiomiopatias , Euphorbia , Camundongos , Animais , Doxorrubicina/farmacologia , Miócitos Cardíacos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/tratamento farmacológico , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/patologia
5.
J Ethnopharmacol ; 321: 117533, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056538

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Maca root (Lepidium meyenii Walp.) is a Peruvian plant of the Brassicaceae family. Maca roots are popular food supplements used to treat a variety of ailments described traditionally as enhancing metabolic and health conditions. AIM OF THE STUDY: Metabolic syndrome (MetS) has been the real scourge globally, affecting more than one-fourth of the global population. MetS causes the development of multi-organ illnesses, including altered blood cholesterol and sugar levels, oxidative stress, and hypertension. This study evaluated maca root total methanolic extract (MTE) as a potential nutraceutical to manage the complications of MetS. MATERIALS AND METHODS: After the first 4 weeks of a high-fat high-carbohydrate diet (HFCD), streptozotocin (STZ) was injected in Wistar rats to induce the MetS model. Animals were treated orally with MTE at 100 mg/kg and 300 mg/kg for 4 weeks compared to metformin at 200 mg/kg after confirmation of diabetes. RESULTS: One month of MTE supplementation in HFCD-fed rats remarkably decreased the elevation of blood glucose and lipids, improved liver function and insulin resistance, additionally it successfully restored the state of inflammatory and oxidative stress. The extract was standardized to contain total phenolics equal to 24.45 ± 0.96 µg Gallic acid/mg extract. CONCLUSIONS: Our findings suggest that MTE improves MetS by reducing hyperglycemia, hyperlipidemia, inflammation, and oxidative stress. While also improving beta cell secretory functions, implying that MTE could be used as a balancing drug in the prevention and treatment of metabolic abnormalities linked to type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Lepidium , Síndrome Metabólica , Ratos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos Wistar , Síndrome Metabólica/tratamento farmacológico , Glicemia , Biomarcadores , Dieta , Dieta Hiperlipídica/efeitos adversos
6.
PLoS One ; 18(12): e0294067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127865

RESUMO

Frankincense oil has gained increased popularity in skin care, yet its anti-aging effect remains unclear. The current study aimed to investigate the anti-photoaging effect of frankincense (Boswellia papyrifera (Del.) Hochst., Family Burseraceae) essential oil in an in vivo model. The oil was initially extracted by two methods: hydro-distillation (HD) and microwave-assisted hydro-distillation (MAHD). GC/MS analysis revealed the dominance of n-octyl acetate, along with other marker compounds of B. papyrifera including octanol and diterpene components (verticilla 4(20) 7, 11-triene and incensole acetate). Thereafter, preliminary investigation of the anti-collagenase and anti-elastase activities of the extracted oils revealed the superior anti-aging effect of HD-extracted oil (FO), comparable to epigallocatechin gallate. FO was subsequently formulated into solid lipid nanoparticles (FO-SLNs) via high shear homogenization to improve its solubility and skin penetration characteristics prior to in vivo testing. The optimimal formulation prepared with 0.5% FO, and 4% Tween® 80, demonstrated nanosized spherical particles with high entrapment efficiency percentage and sustained release for 8 hours. The anti-photoaging effect of FO and FO-SLNs was then evaluated in UVB-irradiated hairless rats, compared to Vitamin A palmitate as a positive standard. FO and FO-SLNs restored the antioxidant capacity (SOD and CAT) and prohibited inflammatory markers (IL6, NFκB p65) in UVB-irradiated rats via downregulation of MAPK (pERK, pJNK, and pp38) and PI3K/AKT signaling pathways, alongside upregulating TGF-ß expression. Subsequently, our treatments induced Procollagen I synthesis and downregulation of MMPs (MMP1, MMP9), where FO-SLNs exhibited superior anti-photoaging effect, compared to FO and Vitamin A, highlighting the use of SLNs as a promising nanocarrier for FO. In particular, FO-SLNs revealed normal epidermal and dermal histological structures, protected against UVß-induced epidermal thickness and dermal collagen degradation. Our results indicated the potential use of FO-SLNs as a promising topical anti-aging therapy.


Assuntos
Boswellia , Franquincenso , Nanopartículas , Óleos Voláteis , Envelhecimento da Pele , Ratos , Animais , Óleos Voláteis/farmacologia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Boswellia/química , Transdução de Sinais , Nanopartículas/química , Envelhecimento , Raios Ultravioleta/efeitos adversos
7.
Sci Rep ; 13(1): 18682, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907626

RESUMO

Gouty arthritis is one of the most common metabolic disorders affecting people. Plant based drugs can lower the risk of this health disorder. The anti-gouty potential of Eucalyptus torquata flowers methanol extract (ETME) was evaluated in vitro via measuring the inhibitory effects of five pro-inflammatory enzymes; xanthine oxidase (XO), hyaluronidase, lipoxygenase (5-LOX), cyclooxygenases COX-1, and COX-2, in addition to evaluating the inhibition of histamine release, albumin denaturation, membrane stabilization, tyrosinase, and protease inhibitory activities. Also, its antioxidant potential was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assays and ferric reducing power assay (FRAP). HPLC-PDA-MS/MS was used to identify the metabolites in the tested extract. The latter exhibited substantial anti-arthritic properties in all assays with comparable potential to the corresponding reference drugs. HPLC-MS/MS analysis of this bioactive extract tentatively annotated 46 metabolites including phloroglucinols, gallic and ellagic acids derivatives, terpenes, flavonoids, fatty acids, and miscellaneous metabolites. Our study highlights the medicinal importance of E. torquata as an anti-gouty candidate and opens new avenues of gouty management.


Assuntos
Artrite Gotosa , Eucalyptus , Plantas Medicinais , Humanos , Plantas Medicinais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antioxidantes/química , Flores/química
8.
Chem Biodivers ; 20(9): e202300778, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37599265

RESUMO

Our study aimed to test the potential of Citrus oils in protecting against paracetamol (PAR)-induced hepatotoxicity. The essential oils of Pineapple sweet orange (OO), Murcott mandarin (MO), Red grapefruit (GO), and Oval kumquat (KO) were investigated using gas chromatography coupled with mass spectrometry (GC/MS). Twenty-seven compounds were identified, with monoterpene hydrocarbons being abundant class. d-Limonene had the highest percentage (92.98 %, 92.82 %, 89.75 %, and 94.46 % in OO, MO, GO, and KO, respectively). Hierarchical cluster analysis (HCA) and principal components analysis (PCA) revealed that octanal, linalool, germacrene D, and d-limonene were the principal discriminatory metabolites that segregated the samples into three distinct clusters. In vitro antioxidant capacities were ranged from 1.2-12.27, 1.79-5.91, and 235.05-585.28 µM Trolox eq/mg oil for 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic (ABTS), ferric-reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC), respectively. In vivo, citrus oils exhibited a significant reduction in alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and nitric oxide (NO). Additionally, there was an increase in glutathione reductase (GSH), and the liver architecture was nearly normal. Molecular docking revealed that d-limonene exhibited a good inhibitory interaction with cytochrome P450 (CYP450) isoforms 1A2, 3A4, and 2E1, with binding energies of -6.17, -4.51, and -5.61 kcal/mol, respectively.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Citrus , Óleos Voláteis , Óleos Voláteis/química , Citrus/química , Antioxidantes/química , Acetaminofen , Limoneno , Interações Ervas-Drogas , Simulação de Acoplamento Molecular
9.
Toxics ; 11(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36851034

RESUMO

Cisplatin (Cis) is a potent chemotherapeutic agent; however, it is linked with oxidative stress, inflammation, and apoptosis, which may harmfully affect the brain. Hypericum perforatum L. (HP L.) is a strong medicinal plant, but its hydrophobic polyphenolic compounds limit its activity. Therefore, our study aimed to investigate the neuroprotective action of HP L. and its nanoemulsion (NE) against Cis-induced neurotoxicity. The prepared HP.NE was subjected to characterization. The droplet size distribution, surface charge, and morphology were evaluated. In addition, an in vitro dissolution study was conducted. Compared to Cis-intoxicated rats, HP L. and HP.NE-treated rats displayed improved motor activity and spatial working memory. They also showed an increase in their antioxidant defense system and a reduction in the levels of pro-inflammatory cytokines in the brain. Moreover, they showed an increase in the expression levels of the PON-3 and GPX genes, which are associated with a reduction in the brain levels of COX-2 and TP-53. These findings were confirmed by reducing the immunohistochemical expression of nuclear factor kappa (NF-ƘB) and enhanced Ki-67 levels. In conclusion, HP L. is a promising herb and could be used as an adjuvant candidate to ameliorate chemotherapeutic-induced neurotoxicity. Moreover, HP.NE has superior activity in lessening Cis-induced oxidative stress, inflammation, and apoptosis in brain tissue.

10.
Inflammopharmacology ; 31(2): 859-875, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773191

RESUMO

In this study, the anti-inflammatory effects of the methanolic extract (TE) of Plumeria obtusa L. (aerial parts) and its fractions were evaluated in vitro, and active fraction was evaluated in vivo. Among tested extracts, dichloromethane fraction (DCM-F) exhibited the strongest inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) in RAW 264.7 macrophages. The effect of DCM-F on LPS-induced acute lung injury (ALI) in mice was studied. The animals were divided into five groups (n = 7) randomly; Gp I: negative control, GP II: positive control (LPS group), GP III: standard (dexamethasone, 2 mg/kg b.wt), GP IV and V: DCM-F (100 mg/kg), and DEM-F (200 mg/kg), respectively. DCM-F at a dose of 200 mg/kg suppressed the ability of LPS to increase the levels of nitric oxide synthase (iNOS), NO, tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6), as measured by ELISA. In addition, the expression of cyclooxygenase-2 (COX-2) was reduced (determined by immunohistochemistry) and the level of malondialdehyde (MDA) was decreased while that of catalase was restored to the normal values. Furthermore, the histopathological scores of inflammation induced by LPS were reduced. Twenty-two compounds were tentatively identified in DCM-F using LC/ESI-QToF with iridoids, phenolic derivatives and flavonoids as major constituents. Identified compounds were subjected to two different molecular docking processes against iNOS and prostaglandin E synthase-1 target receptors. Notably, protoplumericin A and 13-O-coumaroyl plumeride were the most promising members compared to the co-crystallized inhibitor in each case. These findings suggested that DCM-F attenuates the LPS-induced ALI in experimental animals through its anti-inflammatory and antioxidant potential.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/uso terapêutico , NF-kappa B/metabolismo , Inflamação/metabolismo , Macrófagos , Anti-Inflamatórios/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
11.
Steroids ; 193: 109198, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36780968

RESUMO

From the dichloromethane (DCM) fraction of the crude ethanolic extract of Caralluma awdeliana, four pregnane glycosides and a flavone glycoside were isolated using a bio-guided isolation approach. The different extracts of C. awdeliana were subjected to in vitro enzyme inhibitory assays of anticholinesterases (AChE and BChE) and anti-inflammatory (COXs and 5-LOX). The highest inhibitory activity was exhibited by DCM fraction against COX-1, COX-2, and 5-LOX with IC50 of 4.8 ± 0.5 µg/mL, 0.68 ± 0.2 µg/mL, and 39.5 ± 3.0 µg/mL, respectively. The DCM showed also a moderate activity against AChE (IC50 384.72 ± 3.6 µg/mL), and BChE (IC50 384.72 ± 3.6 µg/mL). The repeated chromatography of DCM fraction resulted in the isolation of two new pregnane glycosides, namely awdeliosides A (1) and B (4), two known ones, namely caratuberosides B and D, along with the known flavone glycoside identified as luteolin 4 -O-neohesperidoside. All the isolated compounds were tested for their in vitro enzyme inhibitory assays. Among the isolated compounds, awdelioside B (4) showed the most potent effect against COX-1 with IC50 value of 10.99 ± 0.35 µM, compared to standard celecoxib (IC50 230.74 ± 2.62 µM). All the isolated compounds showed weak anticholinesterase, except a moderate activity observed for awdelioside B (4) against BChE with IC50 value of 15.63 ± 3.5 µM, compared to standard donepezil (IC50 0.77 ± 0.0088 µM).


Assuntos
Apocynaceae , Flavonas , Plantas Medicinais , Inibidores da Colinesterase/farmacologia , Extratos Vegetais/farmacologia , Iêmen , Glicosídeos , Anti-Inflamatórios/farmacologia , Pregnanos
12.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615550

RESUMO

Red onion wastes (ROW) are valuable sources of bioactive metabolites with promising antimicrobial effects. Methicillin-resistant Staphylococcus aureus (MRSA) infections are a growing risk in hospitals and communities. This study aims to investigate the in vitro and in vivo antibiofilm activities of the acidified ethanolic extract of red onion scales (RO-T) and its fractions against an MRSA vaginal colonization model. The RO-T extract, as well as its anthocyanin-rich fraction (RO-P) and flavonoid-rich fraction (RO-S), recorded a promising antibacterial activity against highly virulent strains of bacteria (MRSA, Acinetobacter baumannii, Escherichia coli and Pseudomonas aeruginosa). RO-S showed the highest antibacterial activity (MBC of 0.33 ± 0.11 mg/mL) against MRSA USA300 and significantly eradicated its biofilm formation with an IC50 of 0.003. Using a rat model, in vivo assessment on all samples, which were formulated as a hydrogel, revealed a significant reduction of MRSA bacterial load recovered from an infected vagina compared to that of the negative control group (NCG). RO-T extract and vancomycin groups recorded the highest antibacterial activity with a bacterial load 2.998 and 3.358 logs lower than the NCG, respectively. The histopathological investigation confirmed our findings. RO-T and RO-S were standardized for their quercetin content. Finally, ROW offers a new potent antibiofilm agent mostly due to its high quercetin content.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Eliminação de Resíduos , Feminino , Ratos , Animais , Cebolas , Alimentos , Quercetina/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Escherichia coli , Biofilmes
13.
Drug Deliv Transl Res ; 13(1): 252-274, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35672652

RESUMO

Ashwagandha (ASH), a vital herb in Ayurvedic medicine, demonstrated potent preclinical hepato- and neuroprotective effects. However, its efficacy is limited due to low oral bioavailability. Accordingly, we encapsulated ASH extract in chitosan-alginate bipolymeric nanocapsules (ASH-BPNCs) to enhance its physical stability and therapeutic effectiveness in the gastrointestinal tract. ASH-BPNC was prepared by emulsification followed by sonication. The NCs showed small particle size (< 220 nm), zeta-potential of 25.2 mV, relatively high entrapment efficiency (79%), physical stability at acidic and neutral pH, and in vitro release profile that extended over 48 h. ASH-BPNC was then investigated in a thioacetamide-induced hepatic encephalopathy (HE) rat model. Compared with free ASH, ASH-BPNC improved survival, neurological score, general motor activity, and cognitive task-performance. ASH-BPNC restored ALT, AST and ammonia serum levels, and maintained hepatic and brain architecture. ASH-BPNC also restored GSH, MDA, and glutathione synthetase levels, and Nrf2 and MAPK signaling pathways in liver and brain tissues. Moreover, ASH-BPNC downregulated hepatic NF-κB immunohistochemical expression. Moreover, the in vivo biodistribution studies demonstrated that most of the administered ASH-BPNC is accumulated in the brain and hepatic tissues. In conclusion, chitosan-alginate BPNCs enhanced the hepatoprotective and neuroprotective effects of ASH, thus providing a promising therapeutic approach for HE.


Assuntos
Quitosana , Encefalopatia Hepática , Nanocápsulas , Fármacos Neuroprotetores , Animais , Ratos , Encefalopatia Hepática/induzido quimicamente , Encefalopatia Hepática/tratamento farmacológico , Distribuição Tecidual , Transdução de Sinais , Extratos Vegetais/farmacologia
14.
AAPS PharmSciTech ; 24(1): 15, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522541

RESUMO

Pollution is a worldwide environmental risk. Arsenic (As) is an environmental pollutant with a major health concern due to its toxic effects on multiple body organs, including the brain. Humans are exposed to As through eating contaminated food and water or via skin contact. Salix species (willow) are plants with medicinal efficacy. Salix subserrata Willd bark extract-loaded chitosan nanoparticles (SBE.CNPs) was formulated, characterized, and evaluated against As-induced neurotoxicity. The stem bark was selected for nanoparticle formulation based on HPLC-PDA-ESI-MS/MS profiling and in vitro antioxidant assessment using free radical scavenging activity. SBE.CNPs demonstrated an average un-hydrated diameter of 193.4 ± 24.5 nm and zeta potential of + 39.6 ± 0.4 mV with an encapsulation efficiency of 83.7 ± 4.3%. Compared to As-intoxicated rats, SBE.CNP-treated rats exhibited anxiolytic activity and memory-boosting as evidenced in open field test, light-dark activity box, and Y-maze. Also, it increased the antioxidant biomarkers, including superoxide dismutase and glutathione peroxidase associated with reducing the malondialdehyde levels and apoptotic activity. Besides this, SBE.CNPs maintained the brain architecture and downregulated both nuclear factor-kappa B and heme oxygenase-1 expression. These results suggest that SBE.CNP administration showed promising potent neuroprotective and antioxidative efficiencies against arsenic-induced oxidative threats.


Assuntos
Arsênio , Quitosana , Nanopartículas , Salix , Humanos , Animais , Ratos , Antioxidantes/farmacologia , Casca de Planta , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/farmacologia
15.
AAPS PharmSciTech ; 23(7): 243, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028598

RESUMO

Hypericum perforatum (HP) is characterized by potent medicinal activity. However, the poor water solubility of many HP constituents limits their therapeutic effectiveness. Self-nanoemulsifying self-nanosuspension loaded with HP (HP.SNESNS) was formulated to improve the bioefficacy of HP. It was prepared using 10% triacetin, 57% Tween 20, and 33% PEG 400 and then incorporated with HP extract (100 mg/mL). HP.SNESNS demonstrated a bimodal size distribution (258.65 ± 29.35 and 9.08 ± 0.01 nm) corresponding to nanosuspension and nanoemulsion, respectively, a zeta potential of -8.03 mV, and an enhanced dissolution profile. Compared to the unformulated HP (100 mg/kg), HP.SNESNS significantly improved cardiac functions by decreasing the serum myocardial enzymes, nitric oxide (NO), and tumor necrosis factor- α (TNF-α) as well as restoring the heart tissue's normal architecture. Furthermore, it ameliorates anxiety, depressive-like behavior, and cognitive dysfunction by decreasing brain TNF-α, elevating neurotransmitters (norepinephrine and serotonin), and brain-derived neurotrophic factor (BDNF). In addition, HP.SNESNS augmented the immunohistochemical expression of cortical and hippocampal glial fibrillary acidic protein (GFAP) levels while downregulating the cortical Bcl-2-associated X protein (Bax) expression levels. Surprisingly, these protective activities were comparable to the HP (300 mg/kg). In conclusion, HP.SNESNS (100 mg/kg) exerted antidepressant and cardioprotective activities in the post-MI depression rat model.


Assuntos
Hypericum , Infarto do Miocárdio , Animais , Antidepressivos , Depressão , Extratos Vegetais , Óleos de Plantas , Ratos , Fator de Necrose Tumoral alfa
16.
Sci Rep ; 12(1): 10288, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717541

RESUMO

Turmeric, the rhizomes of Curcuma longa L., is one of the top selling spices, food preservatives, and food colorants. In addition, it exhibits health promoting benefits owing to its unique phytochemical composition. Nevertheless, it is commonly subjected to heat drying, hence, the dried powder is the most used form and can easily be adulterated with allied species. Therefore, our research aimed to profile the phytochemical composition and investigate the impact of drying of turmeric. Extraction and fractionation followed by LC- and GC-MS analysis resulted in the identification of a total of 161 metabolites belonged to various phytochemical classes. Moreover, multivariate data analysis identified curcuminoids, terpecurcumins, and organic acids as potential markers for drying. Based on the applied analytical techniques in combination with chemometrics, these investigations have succeeded to provide good coverage of the metabolome of turmeric in both fresh and dried forms.


Assuntos
Curcuma , Rizoma , Curcuma/química , Dessecação , Diarileptanoides , Metabolômica/métodos , Extratos Vegetais/análise , Rizoma/química
17.
Biomed Pharmacother ; 145: 112456, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34839259

RESUMO

Ivy leaves (Hedera helix) is a traditional plant used for common cold, cough, and bronchial disorders and can be used for rheumatoid arthritis (RA) as an attempt in alternative medicine. RA is a chronic autoimmune disease characterized by its increasing frequency and adverse consequences. There is an urgent need for a long-term therapy that has favorable biological effects and is less expensive than the already authorized synthetic medicines. This study aimed to determine the anti-arthritic potentials of Hedera helix with determination of the bioactive fraction and discovery of its second-generation metabolites by means of LC/MS. The total ivy ethanolic extract (TIE-E), saponins fraction (Sap-F) and flavonoids fraction (Flav-F) were investigated for their in-vitro anti-arthritic effects and in-vivo by Adjuvant-induced arthritis (AIA) using Complete Freund's Adjuvant (0.1 mL, CFA) intradermal relative to the usual dose of ibuprofen (5 mg/kg). We examined the physical alterations, rheumatoid biomarkers, cytokines that cause and inhibit inflammation, markers of oxidative stress, hyaluronidase and ß-glucuronidase enzyme activity. Each paw's histopathology was also evaluated. The chemical profiles of TIE-E were studied using LC/MS in both positive and negative ionization modes. TIE-E (200 mg/kg) and Flav-F (100 mg/kg) significantly (P < 0.05) lowered the edema of the paws, serum immunological indicators, inflammatory cytokines, degenerative enzymes, and indicators of reactive oxygen species with increasing in the anti-inflammatory cytokines. Our findings suggest that extracts of ivy leaves might be used effectively to treat rheumatoid arthritis, where its flavonoid content is responsible for that, and it is able to repress biochemical, oxidative, and pathological changes associated with (AIA) Adjuvant-induced arthritis.


Assuntos
Artrite Reumatoide , Flavonoides/farmacologia , Hedera , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Citocinas/sangue , Modelos Animais de Doenças , Monitoramento de Medicamentos/métodos , Fitoterapia/métodos , Folhas de Planta , Ratos , Espécies Reativas de Oxigênio/análise , Resultado do Tratamento
18.
Antibiotics (Basel) ; 10(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201471

RESUMO

The development of multidrug-resistant bacterial strains is a worldwide emerging problem that needs a global solution. Exploring new natural antibiofilm agents is one of the most important alternative therapies in combating bacterial infections. This study aimed at testing the antimicrobial potential of Eucalyptus sideroxylon flowers extract (ESFE) against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans prior to testing the antibiofilm activity against S. aureus, P. aeruginosa and C. albicans. ESFE demonstrated antimicrobial activity and promising inhibition activity against methicillin-resistant S. aureus (MRSA) biofilm formation up to 95.9% (p < 0.05) at a concentration of 0.05 mg/mL and eradicated C. albicans biofilm formation up to 71.2% (p < 0.05) at a concentration of 0.7 mg/mL. LC-MS analysis allowed the tentative identification of eighty-three secondary metabolites: 21 phloroglucinol, 18 terpenes, 16 flavonoids, 7 oleuropeic acid derivatives, 7 ellagic acid derivatives, 6 gallic acid derivatives, 3 phenolic acids, 3 fatty acids and 2 miscellaneous. In conclusion, E. sideroxylon is a rich source of effective constituents that promote its valorization as a promising candidate in the management of multidrug-resistant bacterial infections.

19.
Biomed Pharmacother ; 140: 111770, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34119929

RESUMO

Our study has renewed interest in the genus Jasmine for the treatment of chronic inflammatory conditions. Aerial parts of Jasminum grandiflorum L. subsp. floribundum total methanolic extract (JTME) were tested for its therapeutic potential as an anti-inflammatory agent using two experimental models in rats; acetic acid (AA) induced ulcerative colitis and adjuvant induced arthritis. The administration of JTME showed anti-inflammatory activity in a dose dependent manner. JTME, 400 mg/kg was like prednisolone, 2 mg/kg p.o. (the reference drug), since it improved the tissues of the colon clinically, macro and microscopically (ulcer index), and histopathological (scoring). It reduced the intestinal expression of pro-inflammatory cytokines in the colonic mucosa; IFNγ, TNFα, IL-6, IL-1, and MPO. It also preserved tight junctions in intestinal epithelial cells by counter-regulating claudin-5 and occludin levels additionally, it had a potent antioxidant activity. The expressions of NF-κB p65, TNF-α and caspase-3 in rats administered AA (2 mL of 4% solution, once, intrarectally) were significantly increased, where the lowest expression was scored in JTME, 400 mg/kg group. In the adjuvant induced model of rheumatoid arthritis, the TJME, 400 mg/kg reduced the levels of cathepsin D, iNOS, NO, RF, CRP, CPP and elevated the total antioxidant capacity of tissues. Additionally, it maintained bones without histopathological lesions, articular cartilage damage, and inflammation of the synovial membrane and periarticular tissues, in contrast to arthritic rats. Finally, we report a new detailed study to validate the medicinal importance of Jasminum for the chronic inflammatory disorders with immune dysfunction with anti-inflammatory and antioxidant effects.


Assuntos
Anti-Inflamatórios/uso terapêutico , Artrite Experimental/tratamento farmacológico , Colite Ulcerativa/tratamento farmacológico , Jasminum , Extratos Vegetais/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Araquidonato 5-Lipoxigenase/metabolismo , Artrite Experimental/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Articulações/efeitos dos fármacos , Articulações/patologia , Masculino , Proteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
20.
J Ethnopharmacol ; 277: 114141, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33905819

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ashwagandha (ASH) is one of the medicinal plants used in traditional Indian, Ayurvedic, and Unani medicines for their broad range of pharmacological activities including, tonic, aphrodisiac, energy stimulant, and counteracting chronic fatigue. Besides, it is used in the treatment of nervous exhaustion, memory-related conditions, insomnia, as well as improving learning ability and memory capacity. ASH is preclinically proven to be efficient in hepatoprotection and improving cognitive impairment, however, its beneficial effects against hepatic encephalopathy (HE) is still unclear. Therefore, this study aimed at investigating the protective effects of ASH root extract against thioacetamide (TAA)-induced HE and delineate the underlying behavioral and pharmacological mechanisms. MATERIALS AND METHODS: ASH metabolites were identified using UPLC-HRMS. Rats were pretreated with ASH (200 and 400 mg/kg) for 29 days and administrated TAA (i.p, 350 mg/kg) in a single dose. Then, behavioral (open field test, Y-maze, modified elevated plus maze and novel object recognition test), and biochemical (ammonia and hepatic toxicity indices) assessments, as well as oxidative stress markers (MDA and GSH) were evaluated. The hepatic and brain levels of glutamine synthetase (GS), nuclear factor erythroid 2-related factor 2 (Nrf2), heme-oxygenase (HO)-1, inducible nitric oxide synthase (iNOS) were detected by enzyme-linked immunosorbent assay (ELISA). The mRNA expressions of p38/ERK½ were determined using real-time polymerase chain reaction (PCR). Moreover, histopathological investigations and immunohistochemical (NF-κB and TNF-α immunohistochemical expressions) examinations were performed. RESULTS: Metabolite profiling of ASH revealed more than 45 identified metabolites including phenolic acids, flavonoids and steroidal lactone triterpenoids. Compared to the TAA-intoxicated group, ASH improved the locomotor and cognitive deficits, serum hepatotoxicity indices and ammonia levels, as well as brain and hepatic histopathological alterations. ASH reduced hepatic and brain levels of MDA, GS, and iNOS, and increased their GSH, Nrf2, and HO-1 levels. Also, ASH downregulated p38 and ERK½ mRNA expressions, and NF-κB and TNF-α immunohistochemical expressions in brain and hepatic tissues. CONCLUSIONS: Our results provided insights into the promising hepato- and neuroprotective effects of ASH, with superiority to 400 mg/kg ASH, to ameliorate HE with its sequential hyperammonemia and liver/brain injuries. This could be attributed to the recorded increase in the spontaneous alternation % and recognition index, antioxidant and anti-inflammatory activities, as well as upregulation of Nrf2 and downregualtion of MAPK signaling pathways.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Encefalopatia Hepática/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Heme Oxigenase (Desciclizante)/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Ratos , Ratos Wistar , Tioacetamida/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA