Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 63(12): 4447-61, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22563121

RESUMO

SHOOTMERISTEMLESS (STM) is a homeobox gene conserved among plant species which is required for the formation and maintenance of the shoot meristem by suppressing differentiation and maintaining an undetermined cell fate within the apical pole. To assess further the role of this gene during seed storage accumulation, transgenic Brassica napus (Bn) plants overexpressing or down-regulating BnSTM under the control of the 35S promoter were generated. Overexpression of BnSTM increased seed oil content without affecting the protein and sucrose level. These changes were accompanied by the induction of genes encoding several transcription factors promoting fatty acid (FA) synthesis: LEAFY COTYLEDON1 (BnLEC1), BnLEC2, and WRINKLE1 (BnWRI1). In addition, expression of key representative enzymes involved in sucrose metabolism, glycolysis, and FA biosynthesis was up-regulated in developing seeds ectopically expressing BnSTM. These distinctive expression patterns support the view of an increased carbon flux to the FA biosynthetic pathway in developing transformed seeds. The overexpression of BnSTM also resulted in a desirable reduction of seed glucosinolate (GLS) levels ascribed to a transcriptional repression of key enzymes participating in the GLS biosynthetic pathway, and possibly to the differential utilization of common precursors for GLS and indole-3-acetic acid synthesis. No changes in oil and GLS levels were observed in lines down-regulating BnSTM. Taken together, these findings provide evidence for a novel function for BnSTM in promoting desirable changes in seed oil and GLS levels when overexpressed in B. napus plants, and demonstrate that this gene can be used as a target for genetic improvement of oilseed species.


Assuntos
Brassica napus/genética , Regulação da Expressão Gênica de Plantas/genética , Glucosinolatos/metabolismo , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Difosfato de Adenosina/análise , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Brassica napus/química , Brassica napus/metabolismo , Regulação para Baixo/genética , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Expressão Gênica , Glucosinolatos/análise , Glicólise , Meristema/genética , Meristema/metabolismo , Óleos de Plantas/análise , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/química , Sementes/genética , Sementes/metabolismo , Sacarose/análise , Sacarose/metabolismo , Regulação para Cima/genética
2.
Planta ; 234(6): 1251-65, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21773791

RESUMO

Besides regulating meristem formation and maintenance in vivo, SHOOTMERISTEMLESS (STM) has been shown to affect embryogenesis. While the over-expression of Brassica napus (Bn)STM enhances the number of microspore-derived embryos produced in culture and their ability to regenerate viable plants, a down-regulation of this gene represses the embryogenic process (Elhiti et al., J Exp Bot, 61:4069-4085, 2010). Synthesis and degradation of pyrimidine and purine nucleotides were measured in developing microspore-derived embryos (MDEs) generated from B. napus lines ectopically expressing or down-regulating BnSTM. Pyrimidine metabolism was investigated by following the metabolic fate of exogenously supplied (14)C-uridine, uracil and orotic acid, whereas purine metabolism was estimated by using (14)C-adenine, adenosine and inosine. The improvement in embryo number and quality affected by the ectopic expression of BnSTM was linked to the increased pyrimidine and purine salvage activity during the early phases of embryogenesis and the enlargement of the adenylate pool (ATP + ADP) required for the active growth of the embryos. This was due to an increase in transcriptional and enzymatic activity of several salvage enzymes, including adenine phosphoribosyltransferase (APRT) and adenosine kinase (ADK). The highly operative salvage pathway induced by the ectopic expression of BnSTM was associated with a slow catabolism of nucleotides, suggesting the presence of an antagonist mechanism controlling the rate of salvage and degradation pathways. During the second half of embryogenesis utilization of uridine for UTP + UDPglucose (UDPG) synthesis increased in the embryos over-expressing BnSTM, and this coincided with a better post-germination performance. All these events were precluded by the down-regulation of BnSTM which repressed the formation of the embryos and their post-embryonic performance. Overall, this work provides evidence that precise metabolic changes are associated with proper embryo development in culture.


Assuntos
Brassica napus/embriologia , Brassica napus/fisiologia , Proteínas de Plantas/genética , Nucleotídeos de Purina/metabolismo , Nucleosídeos de Pirimidina/metabolismo , Adenina Fosforribosiltransferase/metabolismo , Adenosina Quinase/metabolismo , Transporte Biológico , Brassica napus/citologia , Brassica napus/genética , Isótopos de Carbono/análise , Regulação para Baixo , Expressão Gênica/genética , Germinação , Meristema/citologia , Meristema/embriologia , Meristema/genética , Meristema/fisiologia , Ácido Orótico/metabolismo , Proteínas de Plantas/metabolismo , Pólen/fisiologia , Fatores de Tempo , Uracila/metabolismo , Uridina/metabolismo
3.
Planta ; 233(1): 95-107, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20931222

RESUMO

Cellular brassinolide (BL) levels regulate the development of Brassica napus microspore-derived embryos (MDEs). Synthesis and degradation of nucleotides were measured on developing MDEs treated with BL or brassinazole (BrZ), a biosynthetic inhibitor of BL. Purine metabolism was investigated by following the metabolic fate of (14)C-labelled adenine and adenosine, substrates of the salvage pathway, and inosine, an intermediate of both salvage and degradation pathways. For pyrimidine, orotic acid, uridine and uracil were employed as markers for the de novo (orotic acid), salvage (uridine and uracil), and degradation (uracil) pathways. Our results indicate that utilization of adenine, adenosine, and uridine for nucleotides and nucleic acids increased significantly in BL-treated embryos at day 15 and remained high throughout the culture period. These metabolic changes were ascribed to the activities of the respective salvage enzymes: adenine phosphoribosyltransferase (EC 2.4.2.7), adenosine kinase (EC 2.7.1.20), and uridine kinase (EC 2.7.1.48), which were induced by BL applications. The BL promotion of salvage synthesis was accompanied by a reduction in the activities of the degradation pathways, suggesting the presence of competitive anabolic and catabolic mechanisms utilizing the labelled precursors. In BrZ-treated embryos, with depleted BL levels, the salvage activity of both purine and pyrimidine nucleotides was reduced and this was associated to structural abnormalities and poor embryonic performance. In these embryos, the activities of major salvage enzymes were consistently lower to those measured in their control (untreated) counterparts.


Assuntos
Brassica napus/embriologia , Colestanóis/farmacologia , Pólen/embriologia , Purinas/metabolismo , Pirimidinas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Esteroides Heterocíclicos/farmacologia , Brassica napus/efeitos dos fármacos , Brassica napus/enzimologia , Brassinosteroides , Isótopos de Carbono , Marcação por Isótopo , Redes e Vias Metabólicas/efeitos dos fármacos , Nucleotídeos/biossíntese , Proteínas de Plantas/metabolismo , Pólen/efeitos dos fármacos , Sementes/efeitos dos fármacos
4.
J Exp Bot ; 61(10): 2779-94, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20435696

RESUMO

Exogenous applications of brassinolide (BL) increased the number and quality of microspore-derived embryos (MDEs) whereas treatments with brassinazole (BrZ), a BL biosynthetic inhibitor, had the opposite effect. At the optimal concentration (4x10(-6) M) BrZ decreased both embryo yield and conversion to less than half the value of control embryos. Metabolic studies revealed that BL levels had profound effects on glutathione and ascorbate metabolism by altering the amounts of their reduced forms (ASC and GSH) and oxidized forms [dehydroascorbate (DHA), ascorbate free radicals (AFRs), and GSSG]. Applications of BL switched the glutathione and ascorbate pools towards the oxidized forms, thereby lowering the ASC/ASC+DHA+AFR and GSH/GSH+GSSG ratios. These changes were ascribed to the ability of BL to increase the activity of ascorbate peroxidase (APX) and decrease that of glutathione reductase (GR). This trend was reversed in a BL-depleted environment, effected by BrZ applications. These metabolic alterations were associated with changes in embryo structure and performance. BL-treated MDEs developed zygotic-like shoot apical meristems (SAMs) whereas embryos treated with BrZ developed abnormal meristems. In the presence of BrZ, embryos either lacked a visible SAM, or formed SAMs in which the meristematic cells showed signs of differentiation, such as vacuolation and storage product accumulation. These abnormalities were accompanied by the lack or misexpression of three meristem marker genes isolated from Brassica napus (denoted as BnSTM, BnCLV1, and BnZLL-1) homologous to the Arabidopsis SHOOTMERISTEMLESS (STM), CLAVATA 1 (CLV1), and ZWILLE (ZLL). The expression of BnSTM and BnCLV1 increased after a few days in cultures in embryos treated with BL whereas an opposite tendency was observed with applications of BrZ. Compared with control embryos where these two genes exhibited abnormal localization patterns, BnSTM and BnCLV1 always localized throughout the subapical domains of BL-treated embryos in a zygotic-like fashion. Expression of both genes was often lost in the SAM of BrZ-treated embryos. The results suggest that maintenance of cellular BL levels is required to modulate the ascorbate and glutathione redox status during embryogenesis to ensure proper development of the embryos and formation of functional apical meristems.


Assuntos
Brassica napus/embriologia , Colestanóis/metabolismo , Meristema/anatomia & histologia , Meristema/embriologia , Pólen/embriologia , Sementes/crescimento & desenvolvimento , Esteroides Heterocíclicos/metabolismo , Ácido Ascórbico/metabolismo , Biomarcadores/metabolismo , Brassica napus/citologia , Brassica napus/efeitos dos fármacos , Brassica napus/genética , Brassinosteroides , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Glutationa/metabolismo , Hibridização In Situ , Meristema/citologia , Meristema/genética , Pólen/efeitos dos fármacos , Pólen/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/citologia , Sementes/efeitos dos fármacos , Sementes/genética , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA