Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JCI Insight ; 5(7)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271166

RESUMO

Systemic cytokine release and on-target/off-tumor toxicity to normal tissues are the main adverse effects limiting the clinical utility of T cell-redirecting therapies. This study was designed to determine how binding affinity for CD3 and tumor target HER2 impact the efficacy and nonclinical safety of anti-HER2/CD3 T cell-dependent antibodies (TDBs). Affinity was found to be a major determinant for the overall tolerability. Higher affinity for CD3 associated with rapidly elevated peripheral cytokine concentrations, weight loss in mice, and poor tolerability in cynomolgus monkeys. A TDB with lower CD3 affinity was better tolerated in cynomolgus monkeys compared with a higher CD3-affinity TDB. In contrast to tolerability, T cell binding affinity had only limited impact on in vitro and in vivo antitumor activity. High affinity for HER2 was critical for the tumor-killing activity of anti-HER2/CD3 TDBs, but higher HER2 affinity also associated with a more severe toxicity profile, including cytokine release and damage to HER2-expressing tissues. The tolerability of the anti-HER2/CD3 was improved by implementing a dose-fractionation strategy. Fine-tuning the affinities for both the tumor target and CD3 is likely a valuable strategy for achieving maximal therapeutic index of CD3 bispecific antibodies.


Assuntos
Anticorpos Biespecíficos/imunologia , Afinidade de Anticorpos , Antineoplásicos Imunológicos/imunologia , Receptor ErbB-2/imunologia , Animais , Anticorpos Biespecíficos/química , Antineoplásicos Imunológicos/química , Complexo CD3/química , Células CHO , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Humanos , Macaca fascicularis , Receptor ErbB-2/química
2.
BioDrugs ; 32(5): 441-464, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30132211

RESUMO

Bispecific antibodies have moved from being an academic curiosity with therapeutic promise to reality, with two molecules being currently commercialized (Hemlibra® and Blincyto®) and many more in clinical trials. The success of bispecific antibodies is mainly due to the continuously growing number of mechanisms of actions (MOA) they enable that are not accessible to monoclonal antibodies. One of the earliest MOA of bispecific antibodies and currently the one with the largest number of clinical trials is the redirecting of the cytotoxic activity of T-cells for oncology applications, now extending its use in infective diseases. The use of bispecific antibodies for crossing the blood-brain barrier is another important application because of its potential to advance the therapeutic options for neurological diseases. Another noteworthy application due to its growing trend is enabling a more tissue-specific delivery or activity of antibodies. The different molecular solutions to the initial hurdles that limited the development of bispecific antibodies have led to the current diverse set of bispecific or multispecific antibody formats that can be grouped into three main categories: IgG-like formats, antibody fragment-based formats, or appended IgG formats. The expanded applications of bispecific antibodies come at the price of additional challenges for clinical development. The rising complexity in their structure may increase the risk of immunogenicity and the multiple antigen specificity complicates the selection of relevant species for safety assessment.


Assuntos
Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/farmacologia , Produtos Biológicos/farmacologia , Engenharia de Proteínas/métodos , Animais , Anticorpos Biespecíficos/farmacocinética , Produtos Biológicos/imunologia , Membrana Celular/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Imunoglobulina G/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Anticorpos de Cadeia Única/química , Anticorpos de Domínio Único/química
3.
Int J Dev Biol ; 52(5-6): 737-42, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18649285

RESUMO

Mammalian fertilization is a complex multi-step process mediated by different molecules present on both gametes. CRISP1 (cysteine-rich secretory protein 1) is an epididymal protein thought to participate in gamete fusion through its binding to egg-complementary sites. Structure-function studies using recombinant fragments of CRISP1 as well as synthetic peptides reveal that its egg-binding ability resides in a 12 amino acid region corresponding to an evolutionary conserved motif of the CRISP family, named Signature 2 (S2). Further experiments analyzing both the ability of other CRISP proteins to bind to the rat egg and the amino acid sequence of their S2 regions show that the amino acid sequence of the S2 is needed for CRISP1 to interact with the egg. CRISP1 appears to be involved in the first step of sperm binding to the zona pellucida, identifying a novel role for this protein in fertilization. The observation that sperm testicular CRISP2 is also able to bind to the egg surface suggests a role for this protein in gamete fusion. Subsequent experiments confirmed the participation of CRISP2 in this step of fertilization and revealed that CRISP1 and CRISP2 interact with common egg surface binding sites. Together, these results suggest a functional cooperation between CRISP1 and CRISP2 to ensure the success of fertilization. These observations contribute to a better understanding of the molecular mechanisms underlying mammalian fertilization.


Assuntos
Cisteína/química , Glicoproteínas/fisiologia , Glicoproteínas de Membrana/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Animais , Moléculas de Adesão Celular , Feminino , Cobaias , Humanos , Masculino , Proteínas de Membrana , Camundongos , Modelos Biológicos , Ligação Proteica , Ratos , Espermatozoides/fisiologia
4.
Biol Reprod ; 67(4): 1225-31, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12297540

RESUMO

Rat sperm epididymal glycoprotein DE belongs to the cysteine-rich secretory protein (CRISP) family and participates in sperm-egg fusion through its binding to complementary sites on the egg surface. To investigate the molecular mechanisms underlying the role of DE in gamete fusion, in the present work we expressed DE in a prokaryotic system, and examined the relevance of carbohydrates and disulfide bonds for the biological activity of the protein. Immunofluorescence and sperm-egg fusion assays carried out in the presence of recombinant DE (recDE) revealed that this protein exhibits the ability to bind to the DE-egg binding sites and to inhibit gamete fusion, as does native DE (nDE). Comparison of the proteins indicated, however, that the inhibitory ability of recDE was significantly lower than that of nDE. This difference would not be due to the lack of carbohydrates in the bacterially expressed protein because enzymatically deglycosylated nDE was as able as the untreated protein to inhibit gamete fusion. To examine whether disulfide bridges are involved in DE activity, the presence of sulfhydryls in nDE and recDE was evaluated by the biotin-maleimide technique. Results indicated that, unlike nDE, in which all cysteines are involved in disulfide bonds, recDE contains free thiol groups. Subsequent experiments showed that reduction of nDE with dithiothreitol significantly decreased the ability of the protein to inhibit gamete fusion. Together, these results indicate that whereas carbohydrates do not have a role in DE-mediated gamete fusion, disulfide bridges are required for full biological activity of the protein. To our knowledge, this is the first study reporting the relevance of structural components for the function of a CRISP member.


Assuntos
Epididimo/química , Expressão Gênica , Glicoproteínas/química , Glicoproteínas/fisiologia , Proteínas de Plasma Seminal/química , Proteínas de Plasma Seminal/fisiologia , Interações Espermatozoide-Óvulo , Relação Estrutura-Atividade , Animais , Biotina , Western Blotting , Carboidratos/análise , Carboidratos/química , Dissulfetos/análise , Dissulfetos/química , Ditiotreitol/farmacologia , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Técnica Indireta de Fluorescência para Anticorpo , Glicoproteínas/genética , Glicosilação , Humanos , Masculino , Maleimidas , Peso Molecular , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Proteínas de Plasma Seminal/genética , Interações Espermatozoide-Óvulo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA