Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22383, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104159

RESUMO

Artesunate is a derivative of artemisinin, an active compound isolated from Artemisia annua which has been used in Traditional Chinese Medicine and to treat malaria worldwide. Artemisinin derivatives have exhibited anti-cancer activity against both solid tumors and leukemia. The direct target(s) of artesunate are controversial; although, heme-bound proteins in the mitochondria have been implicated. We utilized computational modeling to calculate the predicted binding score of artesunate with heme-bound mitochondrial proteins and identified cytochrome c as potential artesunate target. UV-visible spectroscopy showed changes in the absorbance spectrum, and thus protein structure, when cytochrome c was incubated with artesunate. Artesunate induces apoptosis, disrupts mitochondrial membrane potential, and is antagonized by methazolamide in pediatric AML cells indicating a probable mechanism of action involving cytochrome c. We utilized a multi-disciplinary approach to show that artesunate can interact with and is dependent on cytochrome c release to induce cell death in pediatric AML cell lines.


Assuntos
Antimaláricos , Artemisininas , Leucemia Mieloide Aguda , Criança , Humanos , Artesunato/farmacologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Citocromos c , Artemisininas/farmacologia , Heme , Leucemia Mieloide Aguda/tratamento farmacológico
2.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742868

RESUMO

Aberrant levels of reactive oxygen species (ROS) are potential mechanisms that contribute to both cancer therapy efficacy and the side effects of cancer treatment. Upregulation of the non-canonical redox-sensitive NF-kB family member, RelB, confers radioresistance in prostate cancer (PCa). We screened FDA-approved compounds and identified betamethasone (BET) as a drug that increases hydrogen peroxide levels in vitro and protects non-PCa tissues/cells while also enhancing radiation killing of PCa tissues/cells, both in vitro and in vivo. Significantly, BET increases ROS levels and exerts different effects on RelB expression in normal cells and PCa cells. BET induces protein expression of RelB and RelB target genes, including the primary antioxidant enzyme, manganese superoxide dismutase (MnSOD), in normal cells, while it suppresses protein expression of RelB and MnSOD in LNCaP cells and PC3 cells. RNA sequencing analysis identifies B-cell linker protein (BLNK) as a novel RelB complementary partner that BET differentially regulates in normal cells and PCa cells. RelB and BLNK are upregulated and correlate with the aggressiveness of PCa in human samples. The RelB-BLNK axis translocates to the nuclear compartment to activate MnSOD protein expression. BET promotes the RelB-BLNK axis in normal cells but suppresses the RelB-BLNK axis in PCa cells. Targeted disruptions of RelB-BLNK expressions mitigate the radioprotective effect of BET on normal cells and the radiosensitizing effect of BET on PCa cells. Our study identified a novel RelB complementary partner and reveals a complex redox-mediated mechanism showing that the RelB-BLNK axis, at least in part, triggers differential responses to the redox-active agent BET by stimulating adaptive responses in normal cells but pushing PCa cells into oxidative stress overload.


Assuntos
Neoplasias da Próstata , Fator de Transcrição RelB , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Betametasona/farmacologia , Betametasona/uso terapêutico , Humanos , Masculino , Oxirredução , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Tolerância a Radiação , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelB/genética , Fator de Transcrição RelB/metabolismo
3.
J Comput Chem ; 34(25): 2212-21, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-23813626

RESUMO

The program VinaMPI has been developed to enable massively large virtual drug screens on leadership-class computing resources, using a large number of cores to decrease the time-to-completion of the screen. VinaMPI is a massively parallel Message Passing Interface (MPI) program based on the multithreaded virtual docking program AutodockVina, and is used to distribute tasks while multithreading is used to speed-up individual docking tasks. VinaMPI uses a distribution scheme in which tasks are evenly distributed to the workers based on the complexity of each task, as defined by the number of rotatable bonds in each chemical compound investigated. VinaMPI efficiently handles multiple proteins in a ligand screen, allowing for high-throughput inverse docking that presents new opportunities for improving the efficiency of the drug discovery pipeline. VinaMPI successfully ran on 84,672 cores with a continual decrease in job completion time with increasing core count. The ratio of the number of tasks in a screening to the number of workers should be at least around 100 in order to have a good load balance and an optimal job completion time. The code is freely available and downloadable. Instructions for downloading and using the code are provided in the Supporting Information.


Assuntos
Metodologias Computacionais , Avaliação Pré-Clínica de Medicamentos , Receptor alfa de Estrogênio/agonistas , Humanos , Ligantes , Bibliotecas de Moléculas Pequenas/química , Software/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA