Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Kidney Int Rep ; 8(6): 1201-1212, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37284683

RESUMO

Introduction: The putative "renal-K switch" mechanism links dietary potassium intake with sodium retention and involves activation of the sodium chloride (NaCl) cotransporter (NCC) in the distal convoluted tubule in response to low potassium intake, and suppression in response to high potassium intake. This study examined NCC abundance and phosphorylation (phosphorylated NCC [pNCC]) in urinary extracellular vesicles (uEVs) isolated from healthy adults on a high sodium diet to determine tubular responses to alteration in potassium chloride (KCl) intake. Methods: Healthy adults maintained on a high sodium (∼4.5 g [200 mmol]/d) low potassium (∼2.3 g [60 mmol]/d) diet underwent a 5-day run-in period followed by a crossover study, with 5-day supplementary KCl (active phase, Span-K 3 tablets (potassium 24 mmol) thrice daily) or 5-day placebo administrated in random order and separated by 2-day washout. Ambulatory blood pressure (BP) and biochemistries were assessed, and uEVs were analyzed by western blotting. Results: Among the 18 participants who met analysis criteria, supplementary KCl administration (vs. placebo) was associated with markedly higher levels of plasma potassium and 24-hour urine excretion of potassium, chloride, and aldosterone. KCl supplementation was associated with lower uEV levels of NCC (median fold change (KCl/Placebo) = 0.74 [0.30-1.69], P < 0.01) and pNCC (fold change (KCl/Placebo) = 0.81 [0.19-1.75], P < 0.05). Plasma potassium inversely correlated with uEV NCC (R2 = 0.11, P = 0.05). Conclusions: The lower NCC and pNCC in uEVs in response to oral KCl supplementation provide evidence to support the hypothesis of a functional "renal-K switch" in healthy human subjects.

2.
Cells ; 11(1)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35011657

RESUMO

The thiazide-sensitive sodium chloride cotransporter (NCC) plays a vital role in maintaining sodium (Na+) and potassium (K+) homeostasis. NCC activity is modulated by with-no-lysine kinases 1 and 4 (WNK1 and WNK4), the abundance of which is controlled by the RING-type E3 ligase Cullin 3 (Cul3) and its substrate adapter Kelch-like protein 3. Dietary K+ intake has an inverse correlation with NCC activity, but the mechanism underlying this phenomenon remains to be fully elucidated. Here, we investigated the involvement of other members of the cullin family in mediating K+ effects on NCC phosphorylation (active form) and abundance. In kidneys from mice fed diets varying in K+ content, there were negative correlations between NCC (phosphorylated and total) and active (neddylated) forms of cullins (Cul1, 3, 4, and 5). High dietary K+ effects on phosphorylated NCC were attenuated in Cul3 mutant mice (CUL3-Het/Δ9). Short-term (30 min) and long-term (24 h) alterations in the extracellular K+ concentration did not affect cullin neddylation levels in ex vivo renal tubules. In the short term, the ability of high extracellular K+ to decrease NCC phosphorylation was preserved in the presence of MLN4924 (pan-cullin inhibitor), but the response to low extracellular K+ was absent. In the long term, MLN4924 attenuated the effects of high extracellular K+ on NCC phosphorylation, and responses to low extracellular K+ were absent. Our data suggest that in addition to Cul3, other cullins are involved in mediating the effects of K+ on NCC phosphorylation and abundance.


Assuntos
Proteínas Culina/metabolismo , Potássio/farmacologia , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Ciclopentanos/farmacologia , Suplementos Nutricionais , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Pirimidinas/farmacologia
3.
Am J Physiol Regul Integr Comp Physiol ; 316(2): R157-R164, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30521366

RESUMO

Measurements of aldosterone for diagnosis of primary aldosteronism are usually made from blood sampled in the morning when aldosterone typically peaks. We tested the relative contributions and interacting influences of the circadian system, ongoing behaviors, and prior sleep to this morning peak in aldosterone. To determine circadian rhythmicity and separate effects of behaviors on aldosterone, 16 healthy participants completed a 5-day protocol in dim light while all behaviors ranging from sleep to exercise were standardized and scheduled evenly across the 24-h circadian period. In another experiment, to test the separate effects of prior nocturnal sleep or the inactivity that accompanies sleep on aldosterone, 10 healthy participants were studied across 2 nights: 1 with sleep and 1 with maintained wakefulness (randomized order). Plasma aldosterone was measured repeatedly in each experiment. Aldosterone had a significant endogenous rhythm ( P < 0.001), rising across the circadian night and peaking in the morning (~8 AM). Activity, including exercise, increased aldosterone, and different behaviors modulated aldosterone differently across the circadian cycle (circadian phase × behavior interaction; P < 0.001). In the second experiment, prior nocturnal sleep and prior rested wakefulness both increased plasma aldosterone ( P < 0.001) in the morning, to the same extent as the change in circadian phases between evening and morning. The morning increase in aldosterone is due to effects of the circadian system plus increased morning activities and not prior sleep or the inactivity accompanying sleep. These findings have implications for the time of and behaviors preceding measurement of aldosterone, especially under conditions of shift work and jet lag.


Assuntos
Aldosterona/sangue , Comportamento/fisiologia , Ritmo Circadiano/fisiologia , Vigília/fisiologia , Adulto , Temperatura Corporal/fisiologia , Exercício Físico/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sono/fisiologia , Fatores de Tempo
4.
J Am Soc Nephrol ; 28(11): 3414-3424, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28739647

RESUMO

Understanding the tubular location of diuretic resistance (DR) in heart failure (HF) is critical to developing targeted treatment strategies. Rodents chronically administered loop diuretics develop DR due to compensatory distal tubular sodium reabsorption, but whether this translates to human DR is unknown. We studied consecutive patients with HF (n=128) receiving treatment with loop diuretics at the Yale Transitional Care Center. We measured the fractional excretion of lithium (FELi), the gold standard for in vivo assessment of proximal tubular and loop of Henle sodium handling, to assess sodium exit after loop diuretic administration and FENa to assess the net sodium excreted into the urine. The mean±SD prediuretic FELi was 16.2%±9.5%, similar to that in a control cohort without HF not receiving diuretics (n=52; 16.6%±9.2%; P=0.82). Administration of a median of 160 (interquartile range, 40-270) mg intravenous furosemide equivalents increased FELi by 12.6%±10.8% (P<0.001) but increased FENa by only 4.8%±3.3%. Thus, only 34% (interquartile range, 15.6%-75.7%) of the estimated diuretic-induced sodium release did not undergo distal reabsorption. After controlling for urine diuretic levels, the increase in FELi explained only 6.4% of the increase in FENa (P=0.002). These data suggest that administration of high-dose loop diuretics to patients with HF yields meaningful increases in sodium exit from the proximal tubule/loop of Henle. However, little of this sodium seems to reach the urine, consistent with findings from animal models that indicate that distal tubular compensatory sodium reabsorption is a primary driver of DR.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Túbulos Renais Distais/metabolismo , Reabsorção Renal , Inibidores de Simportadores de Cloreto de Sódio e Potássio/uso terapêutico , Idoso , Resistência a Medicamentos , Feminino , Humanos , Masculino , Estudos Prospectivos
5.
Kidney Int ; 91(1): 24-33, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003083

RESUMO

Gitelman syndrome (GS) is a rare, salt-losing tubulopathy characterized by hypokalemic metabolic alkalosis with hypomagnesemia and hypocalciuria. The disease is recessively inherited, caused by inactivating mutations in the SLC12A3 gene that encodes the thiazide-sensitive sodium-chloride cotransporter (NCC). GS is usually detected during adolescence or adulthood, either fortuitously or in association with mild or nonspecific symptoms or both. The disease is characterized by high phenotypic variability and a significant reduction in the quality of life, and it may be associated with severe manifestations. GS is usually managed by a liberal salt intake together with oral magnesium and potassium supplements. A general problem in rare diseases is the lack of high quality evidence to inform diagnosis, prognosis, and management. We report here on the current state of knowledge related to the diagnostic evaluation, follow-up, management, and treatment of GS; identify knowledge gaps; and propose a research agenda to substantiate a number of issues related to GS. This expert consensus statement aims to establish an initial framework to enable clinical auditing and thus improve quality control of care.


Assuntos
Síndrome de Bartter/diagnóstico , Condrocalcinose/etiologia , Suplementos Nutricionais , Síndrome de Gitelman/diagnóstico , Síndrome de Gitelman/tratamento farmacológico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Síndrome de Bartter/sangue , Síndrome de Bartter/genética , Síndrome de Bartter/urina , Cálcio/urina , Canais de Cloreto/genética , Condrocalcinose/prevenção & controle , Conferências de Consenso como Assunto , Diagnóstico Diferencial , Testes Genéticos , Síndrome de Gitelman/complicações , Síndrome de Gitelman/genética , Humanos , Hipopotassemia/sangue , Hipopotassemia/genética , Magnésio/administração & dosagem , Magnésio/sangue , Magnésio/uso terapêutico , Mutação , Fenótipo , Potássio/administração & dosagem , Potássio/sangue , Potássio/uso terapêutico , Guias de Prática Clínica como Assunto , Qualidade de Vida , Doenças Raras/genética , Cloreto de Sódio na Dieta/uso terapêutico , Membro 3 da Família 12 de Carreador de Soluto/genética , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA