Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 12: 627343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796071

RESUMO

The hypothalamic neuroendocrine system is strongly implicated in body energy homeostasis. In particular, the degree of production and release of arginine vasopressin (AVP) in the hypothalamus is affected by plasma osmolality, and that hypothalamic AVP is responsible for thirst and osmolality-dependent water and metabolic balance. However, the osmolality-responsive intracellular mechanism within AVP cells that regulates AVP synthesis is not clearly understood. Here, we report a role for tonicity-responsive enhancer binding protein (TonEBP), a transcription factor sensitive to cellular tonicity, in regulating osmosensitive hypothalamic AVP gene transcription. Our immunohistochemical work shows that hypothalamic AVP cellular activity, as recognized by c-fos, was enhanced in parallel with an elevation in TonEBP expression within AVP cells following water deprivation. Interestingly, our in vitro investigations found a synchronized pattern of TonEBP and AVP gene expression in response to osmotic stress. Those results indicate a positive correlation between hypothalamic TonEBP and AVP production during dehydration. Promoter and chromatin immunoprecipitation assays confirmed that TonEBP can bind directly to conserved binding motifs in the 5'-flanking promoter regions of the AVP gene. Furthermore, dehydration- and TonEBP-mediated hypothalamic AVP gene activation was reduced in TonEBP haploinsufficiency mice, compared with wild TonEBP homozygote animals. Therefore, our result support the idea that TonEBP is directly necessary, at least in part, for the elevation of AVP transcription in dehydration conditions. Additionally, dehydration-induced reductions in body weight were rescued in TonEBP haploinsufficiency mice. Altogether, our results demonstrate an intracellular machinery within hypothalamic AVP cells that is responsible for dehydration-induced AVP synthesis.


Assuntos
Arginina Vasopressina/metabolismo , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neurônios/metabolismo , Animais , Arginina Vasopressina/genética , Haploinsuficiência , Camundongos , Fatores de Transcrição NFATC/genética , Concentração Osmolar , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-fos/metabolismo , Privação de Água
2.
Biochem Biophys Res Commun ; 496(1): 147-152, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29305861

RESUMO

Here, we report thyroid transcription factor 1 (TTF-1) as an important transcription factor for the expression of heme oxygenase-1 (HO-1). HO-1 is a well-known cytoprotective enzyme against inflammation. We observed that HO-1 co-expressed with TTF-1 in mouse hypothalamic cells. Results from luciferase and chromatin immunoprecipitation assays revealed that TTF-1 directly activated HO-1 transcription by binding to binding domains in the 5'-flanking region of the HO-1 gene. A proinflammatory cytokine, tumor necrosis factor-alpha (TNF-α), induced nuclear translocation of TTF-1 and increased binding affinity of TTF-1 to its binding sites on the HO-1 gene. HO-1 mRNA increased with TTF-1 overexpression but decreased with RNA interference of TTF-1 expression in rat astroglial C6 cells. Together with results showing involvement of TTF-1 in the TNF-α-induced increase in interleukin 1 beta and monocyte chemotactic protein 1 production, this study suggests that TTF-1 plays an important role in the mouse hypothalamus TNF-α-induced inflammatory response for regulating HO-1 gene expression.


Assuntos
Regulação da Expressão Gênica/fisiologia , Heme Oxigenase-1/metabolismo , Hipotálamo/metabolismo , Proteínas de Membrana/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo , Ativação Transcricional/fisiologia , Animais , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA