Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 845: 157341, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35842164

RESUMO

Climate change is now a reality and is altering ecosystems, with Canada experiencing 2-4 times the global average rate of warming. This will have a critical impact on berry cultivation and horticulture. Enhancing our understanding of how wild and cultivated berries will perform under changing climates will be essential to mitigating impacts on ecosystems, culture and food security. Our objective was to predict the impact of climate change on habitat suitability of four berry producing Vaccinium species: two species with primarily northern distributions (V. uliginosum, V. vitis-idaea), one species with a primarily southern distribution (V. oxycoccos), and the commercially cultivated V. macrocarpon. We used the maximum entropy (Maxent) model and the CMIP6 shared socioeconomic pathways (SSPs) 126 and 585 projected to 2041-2060 and 2061-2080. Wild species showed a uniform northward progression and expansion of suitable habitat. Our modeling predicts that suitable growing regions for commercial cranberries are also likely to shift with some farms becoming unsuitable for the current varieties and other regions becoming more suitable for cranberry farms. Both V. macrocarpon and V. oxycoccos showed a high dependence on precipitation-associated variables. Vaccinium vitis-idaea and V. uliginosum had a greater number of variables with smaller contributions which may improve their resilience to individual climactic events. Future competition between commercial cranberry farms and wild berries in protected areas could lead to conflicts between agriculture and conservation priorities. New varieties of commercial berries are required to maintain current commercial berry farms.


Assuntos
Frutas , Vaccinium macrocarpon , Agricultura , Mudança Climática , Ecossistema , Segurança Alimentar , Extratos Vegetais
2.
Front Plant Sci ; 12: 683047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249052

RESUMO

Melatonin (N-acetyl-5-methoxy-tryptamine) is a mammalian neurohormone, antioxidant and signaling molecule that was first discovered in plants in 1995. The first studies investigated plant melatonin from a human perspective quantifying melatonin in foods and medicinal plants and questioning whether its presence could explain the activity of some plants as medicines. Starting with these first handful of studies in the late 1990s, plant melatonin research has blossomed into a vibrant and active area of investigation and melatonin has been found to play critical roles in mediating plant responses and development at every stage of the plant life cycle from pollen and embryo development through seed germination, vegetative growth and stress response. Here we have utilized a systematic approach in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) protocols to reduce bias in our assessment of the literature and provide an overview of the current state of melatonin research in plants, covering 1995-2021. This review provides an overview of the biosynthesis and metabolism of melatonin as well as identifying key themes including: abiotic stress responses, root development, light responses, interkingdom communication, phytohormone and plant signaling. Additionally, potential biases in the literature are investigated and a birefringence in the literature between researchers from plant and medical based which has helped to shape the current state of melatonin research. Several exciting new opportunities for future areas of melatonin research are also identified including investigation of non-crop and non-medicinal species as well as characterization of melatonin signaling networks in plants.

3.
Biomolecules ; 11(5)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063522

RESUMO

The use of live biotherapeutic products (LBPs), including single strains of beneficial probiotic bacteria or consortiums, is gaining traction as a viable option to treat inflammatory-mediated diseases like inflammatory bowel disease (IBD). However, LBPs' persistence in the intestine is heterogeneous since many beneficial bacteria lack mechanisms to tolerate the inflammation and the oxidative stress associated with IBD. We rationalized that optimizing LBPs with enhanced colonization and persistence in the inflamed intestine would help beneficial bacteria increase their bioavailability and sustain their beneficial responses. Our lab developed two bioengineered LBPs (SBT001/BioPersist and SBT002/BioColoniz) modified to enhance colonization or persistence in the inflamed intestine. In this study, we examined colon-derived metabolites via ultra-high performance liquid chromatography-mass spectrometry in colitic mice treated with either BioPersist or BioColoniz as compared to their unmodified parent strains (Escherichia coli Nissle 1917 [EcN] and Lactobacillus reuteri, respectively) or to each other. BioPersist administration resulted in lowered concentrations of inflammatory prostaglandins, decreased stress hormones such as adrenaline and corticosterone, increased serotonin, and decreased bile acid in comparison to EcN. In comparison to BioColoniz, BioPersist increased serotonin and antioxidant production, limited bile acid accumulation, and enhanced tissue restoration via activated purine and pyrimidine metabolism. These data generated several novel hypotheses for the beneficial roles that LBPs may play during colitis.


Assuntos
Colite/prevenção & controle , Colo/metabolismo , Escherichia coli/metabolismo , Inflamação/prevenção & controle , Lactobacillus/metabolismo , Probióticos/farmacologia , Animais , Terapia Biológica/métodos , Colite/metabolismo , Colite/microbiologia , Colite/patologia , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Escherichia coli/isolamento & purificação , Feminino , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Lactobacillus/isolamento & purificação , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL
4.
PLoS One ; 14(10): e0223878, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31622392

RESUMO

In the 60 years since Skoog and Miller first reported the chemical redirection of plant growth the underlying biochemical mechanisms are still poorly understood, with one challenge being the capacity for applied growth regulators to act indirectly or be metabolized to active phytohormones. We hypothesized that tryptophan is metabolized to auxin, melatonin or serotonin inducing organogenesis in St. John's wort (Hypericum perforatum L.). Root explants from two germplasm lines of St. John's wort with altered melatonin metabolism and wildtype were incubated with auxin or tryptophan for 24, 48 or 72 h to induce regeneration. In wildtype, tryptophan had little effect on the indoleamine pathway, and was found to promote primary growth, suggesting excess tryptophan moved quickly through various secondary metabolite pathways and protein synthesis. In lines 4 and 112 tryptophan was associated with modified morphogenesis, indoleamine and auxin levels. Incubation with tryptophan increased shoot organogenesis while incubation with auxin led to root regeneration. The established paradigm of thought views tryptophan primarily as a precursor for auxin and indoleamines, among other metabolites, and mediation of auxin action by the indoleamines as a one-way interaction. We propose that these processes run in both directions with auxin modifying indoleamine biosynthesis and the melatonin:serotonin balance contributing to its effects on plant morphogenesis, and that tryptophan also functions as an inductive signal to mediate diverse phytochemical and morphogenetic pathways.


Assuntos
Aminas/metabolismo , Hypericum/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Triptofano/metabolismo , Hypericum/crescimento & desenvolvimento , Hypericum/metabolismo , Ácidos Indolacéticos/metabolismo , Indóis/química , Modelos Lineares , Melatonina/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Serotonina/metabolismo , Triptofano/farmacologia
5.
J Pineal Res ; 66(1): e12527, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30267543

RESUMO

Melatonin and serotonin are important phytochemicals enabling plants to redirect growth in response to environmental stresses. Despite much research on their biosynthetic routes, localization of their biosynthetic enzymes and recent identification of a phytomelatonin receptor, localization of the molecules themselves has to date not been possible. Elucidation of their locations in living tissues can provide an effective tool to facilitate indolamine research across systems including both plants and animals. In this study, we employed a novel technique, quantum dot nanoparticles, to directly visualize melatonin and serotonin in axenic roots. Melatonin was absorbed through epidermal cells, travelled laterally, and accumulated in endodermal and rapidly dividing pericycle cells. Serotonin was absorbed by cells proximal to the crown with rapid polar movement toward the root tip. Thermal stress disrupted localization and dispersed melatonin and serotonin across cells. These data demonstrate the natural movement of melatonin and serotonin in roots directing cell growth and suggest that plants have a mechanism to disperse the indolamines throughout tissues as antioxidants in response to environmental stresses.


Assuntos
Hypericum/metabolismo , Melatonina/metabolismo , Serotonina/metabolismo , Regulação da Expressão Gênica de Plantas , Pontos Quânticos , Estresse Fisiológico
6.
J Pineal Res ; 64(2)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29149453

RESUMO

Melatonin and serotonin are important signaling and stress mitigating molecules that play important roles across growth and development in plants. Despite many well-documented responses, a systematic investigation of the entire metabolic pathway (tryptophan, tryptamine, and N-acetylserotonin) does not exist, leaving many open questions. The objective of this study was to determine the responses of Hypericum perforatum (L.) to melatonin, serotonin, and their metabolic precursors. Two well-characterized germplasm lines (#4 and 112) created by mutation and a haploid breeding program were compared to wild type to identify specific responses. Germplasm line 4 has lower regenerative and photosynthetic capacity than either wild type or line 112, and there are documented significant differences in the chemistry and physiology of lines 4 and 112. Supplementation of the culture media with tryptophan, tryptamine, N-acetylserotonin, serotonin, or melatonin partially reversed the regenerative recalcitrance and growth impairment of the germplasm lines. Quantification of phytohormones revealed crosstalk between the indoleamines and related phytohormones including cytokinin, salicylic acid, and abscisic acid. We hypothesize that melatonin and serotonin function in coordination with their metabolites in a cascade of phytochemical responses including multiple pathways and phytohormone networks to direct morphogenesis and protect photosynthesis in H. perforatum.


Assuntos
Hypericum/crescimento & desenvolvimento , Hypericum/metabolismo , Melatonina/metabolismo , Desenvolvimento Vegetal/fisiologia , Serotonina/metabolismo , Hypericum/efeitos dos fármacos , Melatonina/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Sementes/crescimento & desenvolvimento , Serotonina/farmacologia , Transdução de Sinais/fisiologia
7.
J Clin Sleep Med ; 13(2): 275-281, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27855744

RESUMO

STUDY OBJECTIVES: Melatonin is an important neurohormone, which mediates circadian rhythms and the sleep cycle. As such, it is a popular and readily available supplement for the treatment and prevention of sleep-related disorders including insomnia and jet lag. This study quantified melatonin in 30 commercial supplements, comprising different brands and forms and screened supplements for the presence of serotonin. METHODS: A total of 31 supplements were analyzed by ultraperformance liquid chromatography with electrochemical detection for quantification of melatonin and serotonin. Presence of serotonin was confirmed through analysis by ultraperformance liquid chromatography with mass spectrometry detection. RESULTS: Melatonin content was found to range from -83% to +478% of the labelled content. Additionally, lot-to-lot variable within a particular product varied by as much as 465%. This variability did not appear to be correlated with manufacturer or product type. Furthermore, serotonin (5-hydroxytryptamine), a related indoleamine and controlled substance used in the treatment of several neurological disorders, was identified in eight of the supplements at levels of 1 to 75 µg. CONCLUSIONS: Melatonin content did not meet label within a 10% margin of the label claim in more than 71% of supplements and an additional 26% were found to contain serotonin. It is important that clinicians and patients have confidence in the quality of supplements used in the treatment of sleep disorders. To address this, manufacturers require increased controls to ensure melatonin supplements meet both their label claim, and also are free from contaminants, such as serotonin. COMMENTARY: A commentary on this article appears in this issue on page 163.


Assuntos
Produtos Biológicos/análise , Suplementos Nutricionais/análise , Melatonina/análise , Serotonina/análise , Produtos Biológicos/química , Cromatografia Líquida , Técnicas Eletroquímicas , Espectrometria de Massas , Melatonina/química , Serotonina/química
8.
Nat Prod Commun ; 11(4): 523-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27396210

RESUMO

A growing body of literature indicates that many synthetic pesticides have adverse effects on human, animal, and environmental health. As a result, plant-derived natural products are quickly gaining momentum as safer and less ecologically damaging alternatives due to their low toxicity, high biodegradability, and good specificity. Essential oils of Lavandula angustifolia, Lavandula x intermedia cv Grosso, and Lavandida x intermedia cv Provence as well as various mono- and sesquiterpene essential oil constituents were tested in order to assess their antifungal potential on three important agricultural pathogens: Botrytis cinerea, Mucor piriformis, and Penicillium expansum. Fungal susceptibility testing was performed using disk diffusion assays. The majority of essential oil constituents tested did not have a significant effect; however, 3-carene, carvacrol, geraniol, nerol and perillyl alcohol demonstrated significant inhibition at concentrations as low as 1 µ/mL. In vivo testing using strawberry fruit as a model system supported in vitro results and revealed that perillyl alcohol, carvacrol and 3-carene were effective in limiting infection by postharvest pathogens.


Assuntos
Antifúngicos/análise , Lavandula/química , Óleos Voláteis , Óleos de Plantas , Botrytis , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Mucor , Penicillium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA