Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8679, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622223

RESUMO

Roots are crucial in plant adaptation through the exudation of various compounds which are influenced and modified by environmental factors. Buckwheat root exudate and root system response to neighbouring plants (buckwheat or redroot pigweed) and how these exudates affect redroot pigweed was investigated. Characterising root exudates in plant-plant interactions presents challenges, therefore a split-root system which enabled the application of differential treatments to parts of a single root system and non-destructive sampling was developed. Non-targeted metabolome profiling revealed that neighbour presence and identity induces systemic changes. Buckwheat and redroot pigweed neighbour presence upregulated 64 and 46 metabolites, respectively, with an overlap of only 7 metabolites. Root morphology analysis showed that, while the presence of redroot pigweed decreased the number of root tips in buckwheat, buckwheat decreased total root length and volume, surface area, number of root tips, and forks of redroot pigweed. Treatment with exudates (from the roots of buckwheat and redroot pigweed closely interacting) on redroot pigweed decreased the total root length and number of forks of redroot pigweed seedlings when compared to controls. These findings provide understanding of how plants modify their root exudate composition in the presence of neighbours and how this impacts each other's root systems.


Assuntos
Amaranthus , Produtos Biológicos , Fagopyrum , Metaboloma , Meristema , Plântula , Produtos Biológicos/metabolismo , Raízes de Plantas/metabolismo
2.
Cell ; 164(1-2): 183-196, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771491

RESUMO

Proper establishment of synapses is critical for constructing functional circuits. Interactions between presynaptic neurexins and postsynaptic neuroligins coordinate the formation of synaptic adhesions. An isoform code determines the direct interactions of neurexins and neuroligins across the synapse. However, whether extracellular linker proteins can expand such a code is unknown. Using a combination of in vitro and in vivo approaches, we found that hevin, an astrocyte-secreted synaptogenic protein, assembles glutamatergic synapses by bridging neurexin-1alpha and neuroligin-1B, two isoforms that do not interact with each other. Bridging of neurexin-1alpha and neuroligin-1B via hevin is critical for the formation and plasticity of thalamocortical connections in the developing visual cortex. These results show that astrocytes promote the formation of synapses by modulating neurexin/neuroligin adhesions through hevin secretion. Our findings also provide an important mechanistic insight into how mutations in these genes may lead to circuit dysfunction in diseases such as autism.


Assuntos
Astrócitos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Tálamo/metabolismo , Animais , Células COS , Chlorocebus aethiops , Dominância Ocular , Humanos , Camundongos , Camundongos Knockout , Doenças do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Sinapses/metabolismo
3.
Biol Psychiatry ; 75(8): 623-30, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23414593

RESUMO

BACKGROUND: Synapse-associated protein 90/postsynaptic density protein 95-associated protein 3 (SAPAP3) is an excitatory postsynaptic protein implicated in the pathogenesis of obsessive-compulsive behaviors. In mice, genetic deletion of Sapap3 causes obsessive-compulsive disorder (OCD)-like behaviors that are rescued by striatal expression of Sapap3, demonstrating the importance of striatal neurotransmission for the OCD-like behaviors. In the striatum, there are two main excitatory synaptic circuits, corticostriatal and thalamostriatal. Neurotransmission defects in either or both of these circuits could potentially contribute to the OCD-like behaviors of Sapap3 knockout (KO) mice. Previously, we reported that Sapap3 deletion reduces corticostriatal alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid-type glutamate receptor-mediated synaptic transmission. METHODS: Whole-cell electrophysiological recording techniques in acute brain slices were used to measure synaptic transmission in the corticostriatal and thalamostriatal circuits of Sapap3 KO mice and littermate control animals. Transgenic fluorescent reporters identified striatopallidal and striatonigral projection neurons. SAPAP isoforms at corticostriatal and thalamostriatal synapses were detected using immunostaining techniques. RESULTS: In contrast to corticostriatal synapses, thalamostriatal synaptic activity is unaffected by Sapap3 deletion. At the molecular level, we find that another SAPAP family member, SAPAP4, is present at thalamostriatal, but not corticostriatal, synapses. This finding provides a molecular rationale for the functional divergence we observe between thalamic and cortical striatal circuits in Sapap3 KO mice. CONCLUSIONS: These findings define the circuit-level neurotransmission defects in a genetic mouse model for OCD-related behaviors, focusing attention on the corticostriatal circuit for mediating the behavioral abnormalities. Our results also provide the first evidence that SAPAP isoforms may be localized to synapses according to circuit-selective principles.


Assuntos
Corpo Estriado/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Transtorno Obsessivo-Compulsivo/fisiopatologia , Sinapses/fisiologia , Animais , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores , Técnicas In Vitro , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Vias Neurais/fisiopatologia , Técnicas de Patch-Clamp , Receptores de AMPA/metabolismo , Tálamo/fisiopatologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA