Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur J Neurosci ; 59(4): 641-661, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38221670

RESUMO

Sleep spindles are major oscillatory components of Non-Rapid Eye Movement (NREM) sleep, reflecting hyperpolarization-rebound sequences of thalamocortical neurons. Reports suggest a link between sleep spindles and several forms of high-frequency oscillations which are considered as expressions of pathological off-line neural plasticity in the central nervous system. Here we investigated the relationship between thalamic sleep spindles and ripples in the anterior and mediodorsal nuclei (ANT and MD) of epilepsy patients. Whole-night LFP from the ANT and MD were co-registered with scalp EEG/polysomnography by using externalized leads in 15 epilepsy patients undergoing a Deep Brain Stimulation protocol. Slow (~12 Hz) and fast (~14 Hz) sleep spindles were present in the human ANT and MD and roughly, 20% of them were associated with ripples. Ripple-associated thalamic sleep spindles were characterized by longer duration and exceeded pure spindles in terms of spindle power as indicated by time-frequency analysis. Furthermore, ripple amplitude was modulated by the phase of sleep spindles within both thalamic nuclei. No signs of pathological processes were correlated with measures of ripple and spindle association, furthermore, the density of ripple-associated sleep spindles in the ANT showed a positive correlation with verbal comprehension. Our findings indicate the involvement of the human thalamus in coalescent spindle-ripple oscillations of NREM sleep.


Assuntos
Epilepsia , Sono , Humanos , Sono/fisiologia , Tálamo/fisiologia , Eletroencefalografia , Núcleo Mediodorsal do Tálamo
2.
Neurology ; 100(18): e1852-e1865, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36927882

RESUMO

BACKGROUND AND OBJECTIVES: The efficacy of deep brain stimulation of the anterior nucleus of the thalamus (ANT DBS) in patients with drug-resistant epilepsy (DRE) was demonstrated in the double-blind Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy randomized controlled trial. The Medtronic Registry for Epilepsy (MORE) aims to understand the safety and longer-term effectiveness of ANT DBS therapy in routine clinical practice. METHODS: MORE is an observational registry collecting prospective and retrospective clinical data. Participants were at least 18 years old, with focal DRE recruited across 25 centers from 13 countries. They were followed for at least 2 years in terms of seizure frequency (SF), responder rate (RR), health-related quality of life (Quality of Life in Epilepsy Inventory 31), depression, and safety outcomes. RESULTS: Of the 191 patients recruited, 170 (mean [SD] age of 35.6 [10.7] years, 43% female) were implanted with DBS therapy and met all eligibility criteria. At baseline, 38% of patients reported cognitive impairment. The median monthly SF decreased by 33.1% from 15.8 at baseline to 8.8 at 2 years (p < 0.0001) with 32.3% RR. In the subgroup of 47 patients who completed 5 years of follow-up, the median monthly SF decreased by 55.1% from 16 at baseline to 7.9 at 5 years (p < 0.0001) with 53.2% RR. High-volume centers (>10 implantations) had 42.8% reduction in median monthly SF by 2 years in comparison with 25.8% in low-volume center. In patients with cognitive impairment, the reduction in median monthly SF was 26.0% by 2 years compared with 36.1% in patients without cognitive impairment. The most frequently reported adverse events were changes (e.g., increased frequency/severity) in seizure (16%), memory impairment (patient-reported complaint, 15%), depressive mood (patient-reported complaint, 13%), and epilepsy (12%). One definite sudden unexpected death in epilepsy case was reported. DISCUSSION: The MORE registry supports the effectiveness and safety of ANT DBS therapy in a real-world setting in the 2 years following implantation. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that ANT DBS reduces the frequency of seizures in patients with drug-resistant focal epilepsy. TRIAL REGISTRATION INFORMATION: MORE ClinicalTrials.gov Identifier: NCT01521754, first posted on January 31, 2012.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Feminino , Criança , Adolescente , Masculino , Estimulação Encefálica Profunda/efeitos adversos , Qualidade de Vida , Estudos Retrospectivos , Estudos Prospectivos , Tálamo , Epilepsia/etiologia , Epilepsia Resistente a Medicamentos/terapia , Convulsões/etiologia , Sistema de Registros
3.
Neuroimage ; 257: 119325, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35605767

RESUMO

Slow waves are major pacemakers of NREM sleep oscillations. While slow waves themselves are mainly generated by cortical neurons, it is not clear what role thalamic activity plays in the generation of some oscillations grouped by slow waves, and to what extent thalamic activity during slow waves is itself driven by corticothalamic inputs. To address this question, we simultaneously recorded both scalp EEG and local field potentials from six thalamic nuclei (bilateral anterior, mediodorsal and ventral anterior) in fifteen epileptic patients (age-range: 17-64 years, 7 females) undergoing Deep Brain Stimulation Protocol and assessed the temporal evolution of thalamic activity relative to scalp slow waves using time-frequency analysis. We found that thalamic activity in all six nuclei during scalp slow waves is highly similar to what is observed on the scalp itself. Slow wave downstates are characterized by delta, theta and alpha activity and followed by beta, high sigma and low sigma activity during subsequent upstates. Gamma activity in the thalamus is not significantly grouped by slow waves. Theta and alpha activity appeared first on the scalp, but sigma activity appeared first in the thalamus. These effects were largely independent from the scalp region in which SWs were detected and the precise identity of thalamic nuclei. Our results suggest that while small thalamocortical neuron assemblies may initiate cortical oscillations, especially in the sleep spindle range, the large-scale neuronal activity in the thalamus which is detected by field potentials is principally driven by global cortical activity, and thus it is highly similar to what is observed on the scalp.


Assuntos
Córtex Cerebral , Couro Cabeludo , Adolescente , Adulto , Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Feminino , Humanos , Pessoa de Meia-Idade , Sono/fisiologia , Tálamo/fisiologia , Adulto Jovem
4.
PLoS One ; 17(2): e0264114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35196348

RESUMO

BACKGROUND: Balance impairment in Parkinson's disease is multifactorial and its changes due to subthalamic stimulation vary in different studies. OBJECTIVE: We aimed to analyze the combination of predictive clinical factors of balance impairment in patients with Parkinson's disease treated with bilateral subthalamic stimulation for at least one year. METHODS: We recruited 24 patients with Parkinson's disease treated with bilateral subthalamic stimulation and 24 healthy controls. They wore an Opal monitor (APDM Inc.) consisting of three-dimensional gyroscopes and accelerometers in the lumbar region. We investigated four stimulation conditions (bilateral stimulation OFF, bilateral stimulation ON, and unilateral right- and left-sided stimulation ON) with four tests: stance on a plain ground with eyes open and closed, stance on a foam platform with eyes open and closed. Age, disease duration, the time elapsed after implantation, levodopa, and stimulation responsiveness were analyzed. The distance of stimulation location from the subthalamic motor center was calculated individually in each plane of the three dimensions. We analyzed the sway values in the four stimulation conditions in the patient group and compared them with the control values. We explored factor combinations (with age as confounder) in the patient group predictive for imbalance with cluster analysis and a machine-learning-based multiple regression method. RESULTS: Sway combined from the four tasks did not differ in the patients and controls on a group level. The combination of the disease duration, the preoperative levodopa responsiveness, and the stimulation responsiveness predicted individual stimulation-induced static imbalance. The more affected patients had more severe motor symptoms; primarily, the proprioceptive followed by visual sensory feedback loss provoked imbalance in them when switching on the stimulation. CONCLUSIONS: The duration of the disease, the severity of motor symptoms, the levodopa responsiveness, and additional sensory deficits should be carefully considered during preoperative evaluation to predict subthalamic stimulation-induced imbalance in Parkinson's disease.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson/fisiopatologia , Equilíbrio Postural , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/terapia , Tálamo/fisiopatologia
5.
Proc Natl Acad Sci U S A ; 116(47): 23772-23782, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685634

RESUMO

The alpha rhythm is the longest-studied brain oscillation and has been theorized to play a key role in cognition. Still, its physiology is poorly understood. In this study, we used microelectrodes and macroelectrodes in surgical epilepsy patients to measure the intracortical and thalamic generators of the alpha rhythm during quiet wakefulness. We first found that alpha in both visual and somatosensory cortex propagates from higher-order to lower-order areas. In posterior cortex, alpha propagates from higher-order anterosuperior areas toward the occipital pole, whereas alpha in somatosensory cortex propagates from associative regions toward primary cortex. Several analyses suggest that this cortical alpha leads pulvinar alpha, complicating prevailing theories of a thalamic pacemaker. Finally, alpha is dominated by currents and firing in supragranular cortical layers. Together, these results suggest that the alpha rhythm likely reflects short-range supragranular feedback, which propagates from higher- to lower-order cortex and cortex to thalamus. These physiological insights suggest how alpha could mediate feedback throughout the thalamocortical system.


Assuntos
Ritmo alfa , Córtex Cerebral/fisiologia , Eletrodos , Eletroencefalografia , Humanos , Tálamo/fisiologia
6.
Neurol Neurochir Pol ; 50(4): 303-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375149

RESUMO

We present the case of a 66-year-old man who has been treated for essential tremor since the age of 58. He developed mild cerebellar gait ataxia seven years after tremor onset. Moderate, global brain atrophy was identified on MRI scans. At the age of 68, only temporary tremor relief could be achieved by bilateral deep brain stimulation of the ventral intermedius nucleus of the thalamus. Bilateral stimulation of the subthalamic nucleus also resulted only in transient improvement. In the meantime, progressive gait ataxia and tetraataxia developed accompanied by other cerebellar symptoms, such as nystagmus and scanning speech. These correlated with progressive development of bilateral symmetric hyperintensity of the middle cerebellar peduncles on T2 weighted MRI scans. Genetic testing revealed premutation of the FMR1 gene, establishing the diagnosis of fragile X-associated tremor/ataxia syndrome. Although this is a rare disorder, it should be taken into consideration during preoperative evaluation of essential tremor. Postural tremor ceased two years later after thalamotomy on the left side, while kinetic tremor of the right hand also improved.


Assuntos
Ataxia/terapia , Estimulação Encefálica Profunda/métodos , Síndrome do Cromossomo X Frágil/terapia , Procedimentos Neurocirúrgicos/métodos , Tálamo/cirurgia , Tremor/terapia , Idoso , Ataxia/diagnóstico por imagem , Ataxia/fisiopatologia , Ataxia/cirurgia , Síndrome do Cromossomo X Frágil/diagnóstico por imagem , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/cirurgia , Humanos , Imageamento por Ressonância Magnética , Masculino , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/fisiopatologia , Tálamo/diagnóstico por imagem , Tálamo/fisiopatologia , Resultado do Tratamento , Tremor/diagnóstico por imagem , Tremor/fisiopatologia , Tremor/cirurgia
7.
Orv Hetil ; 156(52): 2103-9, 2015 Dec 27.
Artigo em Húngaro | MEDLINE | ID: mdl-26686746

RESUMO

Neuromodulation is one of the most developing new disciplines of medical science, which examines how electrical, chemical and mechanical interventions can modulate or change the functioning of the central and peripheral nervous system. Neuromodulation is a reversible form of therapy which uses electrical or mechanical stimulation or centrally-delivered drugs to modulate the abnormal function of the central nervous system in pain, spasticity, epilepsy, movement and psychiatric disorders, and certain cardiac, incontinency, visual and auditory diseases. Neuromodulation therapy has two major branches. Non-invasive neuromodulation includes transcranial magnetic simulation, direct current stimulation and transcutaneous electric nerve stimulation. Invasive neuromodulation includes deep brain stimulation, cortical stimulation, spinal cord stimulation, peripheral nerve stimulation, sacral nerve simulation, and subcutan stimulation. In this article the authors overview the apparently available neural interface technologies in epilepsy surgery.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos/terapia , Estimulação Transcraniana por Corrente Contínua , Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Córtex Cerebral , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Epilepsia Resistente a Medicamentos/fisiopatologia , Medicina Baseada em Evidências , Humanos , Nervos Periféricos , Ensaios Clínicos Controlados Aleatórios como Assunto , Medula Espinal , Tálamo , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Estimulação Transcraniana por Corrente Contínua/instrumentação , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Elétrica Nervosa Transcutânea/efeitos adversos , Estimulação Elétrica Nervosa Transcutânea/instrumentação , Estimulação Elétrica Nervosa Transcutânea/métodos , Estimulação do Nervo Vago/efeitos adversos , Estimulação do Nervo Vago/instrumentação , Estimulação do Nervo Vago/métodos
8.
Ideggyogy Sz ; 68(7-8): 229-42, 2015 Jul 30.
Artigo em Húngaro | MEDLINE | ID: mdl-26380417

RESUMO

Although still a controversial management option, radio-surgery of intracranial cavernomas has become increasingly popular world-wide during the last decade. Microsurgery is a safe and effective treatment for symptomatic hemispheric cavernomas. However, the indication for microsurgical resection of deep eloquent cavernomas is relatively limited even in experienced hands. The importance of radiosurgery has recently been appreciated in parallel with increasing positive experiences both in terms of effectiveness and safety, especially for cases high risk for surgical resection, in the brainstem, thalamus and basal ganglia. While radiosurgery was earlier indicated mainly for surgically inaccessible lesions that had bled multiple times, a more proactive policy has recently become more accepted. In our opinion preventive treatment with the low morbidity radiosurgery serves the patients' interest especially for deep eloquent lesions that had bled not more than once, due to the cumulative morbidity of repeated hemorrhages. Despite our increasing knowledge on natural history, there is currently no available treatment algorithm for cavernomas. Arguments for all three treatment modalities (observation, microsurgery and radiosurgery) are established, but their indication criteria are yet to be defined. It is time to organize a prospective population based data collection in Hungary, which appears to be the most realistic way to clarify indication criteria.


Assuntos
Neoplasias Encefálicas/cirurgia , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Radiocirurgia/tendências , Gânglios da Base/cirurgia , Perda Sanguínea Cirúrgica , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/mortalidade , Tronco Encefálico/cirurgia , Área de Broca/cirurgia , Epilepsia/etiologia , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Hemangioma Cavernoso do Sistema Nervoso Central/mortalidade , Humanos , Internacionalidade , Microcirurgia , Procedimentos Neurocirúrgicos , Seleção de Pacientes , Radiocirurgia/efeitos adversos , Radiocirurgia/normas , Tálamo/cirurgia , Resultado do Tratamento , Conduta Expectante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA