Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 14175, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843714

RESUMO

Patients with chronic kidney disease (CKD) are often 25(OH)D3 and 1,25(OH)2D3 insufficient. We studied whether vitamin D repletion could correct aberrant adipose tissue and muscle metabolism in a mouse model of CKD-associated cachexia. Intraperitoneal administration of 25(OH)D3 and 1,25(OH)2D3 (75 µg/kg/day and 60 ng/kg/day respectively for 6 weeks) normalized serum concentrations of 25(OH)D3 and 1,25(OH)2D3 in CKD mice. Vitamin D repletion stimulated appetite, normalized weight gain, and improved fat and lean mass content in CKD mice. Vitamin D supplementation attenuated expression of key molecules involved in adipose tissue browning and ameliorated expression of thermogenic genes in adipose tissue and skeletal muscle in CKD mice. Furthermore, repletion of vitamin D improved skeletal muscle fiber size and in vivo muscle function, normalized muscle collagen content and attenuated muscle fat infiltration as well as pathogenetic molecular pathways related to muscle mass regulation in CKD mice. RNAseq analysis was performed on the gastrocnemius muscle. Ingenuity Pathway Analysis revealed that the top 12 differentially expressed genes in CKD were correlated with impaired muscle and neuron regeneration, enhanced muscle thermogenesis and fibrosis. Importantly, vitamin D repletion normalized the expression of those 12 genes in CKD mice. Vitamin D repletion may be an effective therapeutic strategy for adipose tissue browning and muscle wasting in CKD patients.


Assuntos
Adipócitos Bege/efeitos dos fármacos , Caquexia/tratamento farmacológico , Calcifediol/uso terapêutico , Calcitriol/uso terapêutico , Insuficiência Renal Crônica/complicações , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Animais , Caquexia/etiologia , Caquexia/fisiopatologia , Calcifediol/sangue , Calcifediol/deficiência , Calcifediol/farmacologia , Calcitriol/sangue , Calcitriol/deficiência , Calcitriol/farmacologia , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Fibrose/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Força da Mão , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Nefrectomia , Hormônio Paratireóideo/sangue , RNA Mensageiro/biossíntese , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/tratamento farmacológico , Teste de Desempenho do Rota-Rod , Análise de Sequência de RNA , Termogênese/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
2.
J Cachexia Sarcopenia Muscle ; 11(1): 120-134, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31721480

RESUMO

BACKGROUND: Ctns-/- mice, a mouse model of infantile nephropathic cystinosis, exhibit hypermetabolism with adipose tissue browning and profound muscle wasting. Ctns-/- mice are 25(OH)D3 and 1,25(OH)2 D3 insufficient. We investigated whether vitamin D repletion could ameliorate adipose tissue browning and muscle wasting in Ctns-/- mice. METHODS: Twelve-month-old Ctns-/- mice and wild-type controls were treated with 25(OH)D3 and 1,25(OH)2 D3 (75 µg/kg/day and 60 ng/kg/day, respectively) or an ethylene glycol vehicle for 6 weeks. Serum chemistry and parameters of energy homeostasis were measured. We quantitated total fat mass and studied expression of molecules regulating adipose tissue browning, energy metabolism, and inflammation. We measured lean mass content, skeletal muscle fibre size, in vivo muscle function (grip strength and rotarod activity), and expression of molecules regulating muscle metabolism. We also analysed the transcriptome of skeletal muscle in Ctns-/- mice using RNAseq. RESULTS: Supplementation of 25(OH)D3 and 1,25(OH)2 D3 normalized serum concentration of 25(OH)D3 and 1,25(OH)2 D3 in Ctns-/- mice, respectively. Repletion of vitamin D partially or fully normalized food intake, weight gain, gain of fat, and lean mass, improved energy homeostasis, and attenuated perturbations of uncoupling proteins and adenosine triphosphate content in adipose tissue and muscle in Ctns-/- mice. Vitamin D repletion attenuated elevated expression of beige adipose cell biomarkers (UCP-1, CD137, Tmem26, and Tbx1) as well as aberrant expression of molecules implicated in adipose tissue browning (Cox2, Pgf2α, and NF-κB pathway) in inguinal white adipose tissue in Ctns-/- mice. Vitamin D repletion normalized skeletal muscle fibre size and improved in vivo muscle function in Ctns-/- mice. This was accompanied by correcting the increased muscle catabolic signalling (increased protein contents of IL-1ß, IL-6, and TNF-α as well as an increased gene expression of Murf-2, atrogin-1, and myostatin) and promoting the decreased muscle regeneration and myogenesis process (decreased gene expression of Igf1, Pax7, and MyoD) in skeletal muscles of Ctns-/- mice. Muscle RNAseq analysis revealed aberrant gene expression profiles associated with reduced muscle and neuron regeneration, increased energy metabolism, and fibrosis in Ctns-/- mice. Importantly, repletion of 25(OH)D3 and 1,25(OH)2 D3 normalized the top 20 differentially expressed genes in Ctns-/- mice. CONCLUSIONS: We report the novel findings that correction of 25(OH)D3 and 1,25(OH)2 D3 insufficiency reverses cachexia and may improve quality of life by restoring muscle function in an animal model of infantile nephropathic cystinosis. Mechanistically, vitamin D repletion attenuates adipose tissue browning and muscle wasting in Ctns-/- mice via multiple cellular and molecular mechanisms.


Assuntos
Tecido Adiposo Marrom/metabolismo , Caquexia/etiologia , Cistinose/tratamento farmacológico , Músculo Esquelético/fisiopatologia , Vitamina D/uso terapêutico , Animais , Caquexia/complicações , Cistinose/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Atrofia Muscular , Vitamina D/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA