Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pain Med ; 21(8): 1590-1603, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32803220

RESUMO

OBJECTIVE: To conduct a systematic literature review of peripheral nerve stimulation (PNS) for pain. DESIGN: Grade the evidence for PNS. METHODS: An international interdisciplinary work group conducted a literature search for PNS. Abstracts were reviewed to select studies for grading. Inclusion/exclusion criteria included prospective randomized controlled trials (RCTs) with meaningful clinical outcomes that were not part of a larger or previously reported group. Excluded studies were retrospective, had less than two months of follow-up, or existed only as abstracts. Full studies were graded by two independent reviewers using the modified Interventional Pain Management Techniques-Quality Appraisal of Reliability and Risk of Bias Assessment, the Cochrane Collaborations Risk of Bias assessment, and the US Preventative Services Task Force level-of-evidence criteria. RESULTS: Peripheral nerve stimulation was studied in 14 RCTs for a variety of painful conditions (headache, shoulder, pelvic, back, extremity, and trunk pain). Moderate to strong evidence supported the use of PNS to treat pain. CONCLUSION: Peripheral nerve stimulation has moderate/strong evidence. Additional prospective trials could further refine appropriate populations and pain diagnoses.


Assuntos
Dor Crônica , Dor Lombar , Estimulação Elétrica Nervosa Transcutânea , Humanos , Manejo da Dor , Nervos Periféricos
2.
Pain Med ; 20(Suppl 1): S23-S30, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31152179

RESUMO

OBJECTIVE: The dorsal root ganglion (DRG) is a novel target for neuromodulation, and DRG stimulation is proving to be a viable option in the treatment of chronic intractable neuropathic pain. Although the overall principle of conventional spinal cord stimulation (SCS) and DRG stimulation-in which an electric field is applied to a neural target with the intent of affecting neural pathways to decrease pain perception-is similar, there are significant differences in the anatomy and physiology of the DRG that make it an ideal target for neuromodulation and may account for the superior outcomes observed in the treatment of certain chronic neuropathic pain states. This review highlights the anatomy of the DRG, its function in maintaining homeostasis and its role in neuropathic pain, and the unique value of DRG as a target in neuromodulation for pain. METHODS: A narrative literature review was performed. RESULTS: Overall, the DRG is a critical structure in sensory transduction and modulation, including pain transmission and the maintenance of persistent neuropathic pain states. Unique characteristics including selective somatic organization, specialized membrane characteristics, and accessible and consistent location make the DRG an ideal target for neuromodulation. Because DRG stimulation directly recruits the somata of primary sensory neurons and harnesses the filtering capacity of the pseudounipolar neural architecture, it is differentiated from SCS, peripheral nerve stimulation, and other neuromodulation options. CONCLUSIONS: There are several advantages to targeting the DRG, including lower energy usage, more focused and posture-independent stimulation, reduced paresthesia, and improved clinical outcomes.


Assuntos
Terapia por Estimulação Elétrica/métodos , Gânglios Espinais/fisiologia , Neuralgia/terapia , Dor Crônica/terapia , Gânglios Espinais/anatomia & histologia , Humanos
3.
Neuropsychopharmacology ; 32(3): 577-88, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16738544

RESUMO

Sensorimotor gating, the ability to automatically filter sensory information, is deficient in a number of psychiatric disorders, yet little is known of the biochemical mechanisms underlying this critical neural process. Previously, we reported that mice expressing a constitutively active isoform of the G-protein subunit Galphas (Galphas(*)) within forebrain neurons exhibit decreased gating, as measured by prepulse inhibition of acoustic startle (PPI). Here, to elucidate the biochemistry regulating sensorimotor gating and to identify novel therapeutic targets, we test the hypothesis that Galphas(*) causes PPI deficits via brain region-specific changes in cyclic AMP (cAMP) signaling. As predicted from its ability to stimulate adenylyl cyclase, we find here that Galphas(*) increases cAMP levels in the striatum. Suprisingly, however, Galphas(*) mice exhibit reduced cAMP levels in the cortex and hippocampus because of increased cAMP phosphodiesterase (cPDE) activity. It is this decrease in cAMP that appears to mediate the effect of Galphas(*) on PPI because Rp-cAMPS decreases PPI in C57BL/6J mice. Furthermore, the antipsychotic haloperidol increases both PPI and cAMP levels specifically in Galphas(*) mice and the cPDE inhibitor rolipram also rescues PPI deficits of Galphas(*) mice. Finally, to block potentially the pathway that leads to cPDE upregulation in Galphas(*) mice, we coexpressed the R(AB) transgene (a dominant-negative regulatory subunit of protein kinase A (PKA)), which fully rescues the reductions in PPI and cAMP caused by Galphas(*). We conclude that expression of Galphas(*) within forebrain neurons causes PPI deficits because of a PKA-dependent decrease in cAMP and suggest that cAMP PDE inhibitors may exhibit antipsychotic-like therapeutic effects.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , AMP Cíclico/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Transtornos Neurológicos da Marcha/metabolismo , Neurônios/metabolismo , Prosencéfalo/citologia , Estimulação Acústica/métodos , Anfetamina/farmacologia , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta à Radiação , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/genética , Haloperidol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Prosencéfalo/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Tionucleotídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA