Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mater Chem B ; 7(41): 6390-6398, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31642844

RESUMO

The aim of this work was to develop and test the in vitro biological activity of nanocapsules loaded with a doxorubicin (DOX) free base dissolved in a core of castor oil shelled by poly(methyl vinyl ether-co-maleic anhydride) conjugated to n-octadecylamine residues. This system was stable and monodisperse, with a hydrodynamic diameter of about 300 nm. These nanocapsules changed the intracellular distribution of DOX, from the nuclei to the cytoplasm, and exhibited higher toxicity towards cancer cells - 4T1 and MCF-7 - and significantly lower toxicity towards normal cells - NIH-3T3 and MCF-10A - in vitro. In conclusion, these nanocapsules are suitable DOX carriers, which remain to be studied in in vivo tumor models.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/metabolismo , Portadores de Fármacos/química , Nanocápsulas/química , Animais , Neoplasias da Mama/patologia , Óleo de Rícino , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular , Citoplasma , Doxorrubicina/toxicidade , Portadores de Fármacos/normas , Humanos , Células MCF-7 , Camundongos , Células NIH 3T3
2.
Langmuir ; 33(40): 10726-10735, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28903564

RESUMO

Aluminum has gathered toxicological attention based on relevant human exposure and its suspected hazardous potential. Nanoparticles from food supplements or food contact materials may reach the human gastrointestinal tract. Here, we monitored the physicochemical fate of aluminum-containing nanoparticles and aluminum ions when passaging an in vitro model of the human gastrointestinal tract. Small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), ion beam microscopy (IBM), secondary ion beam mass spectrometry (TOF-SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) in the single-particle mode were employed to characterize two aluminum-containing nanomaterials with different particle core materials (Al0, γAl2O3) and soluble AlCl3. Particle size and shape remained unchanged in saliva, whereas strong agglomeration of both aluminum nanoparticle species was observed at low pH in gastric fluid together with an increased ion release. The levels of free aluminum ions decreased in intestinal fluid and the particles deagglomerated, thus liberating primary particles again. Dissolution of nanoparticles was limited and substantial changes of their shape and size were not detected. The amounts of particle-associated phosphorus, chlorine, potassium, and calcium increased in intestinal fluid, as compared to nanoparticles in standard dispersion. Interestingly, nanoparticles were found in the intestinal fluid after addition of ionic aluminum. We provide a comprehensive characterization of the fate of aluminum nanoparticles in simulated gastrointestinal fluids, demonstrating that orally ingested nanoparticles probably reach the intestinal epithelium. The balance between dissolution and de novo complex formation should be considered when evaluating nanotoxicological experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA