RESUMO
Carbon dioxide supercritical fluid extraction (CO2 SFE) is a clean and cost-effective method of extracting cannabinoids from cannabis. Using design of experiment methodologies an optimised protocol for extraction of medicinal cannabis bud material (population of mixed plants, combined THC:CBD approximately 1:1.5) was developed at a scale of one kg per extraction. Key variables investigated were CO2 flow rate, extraction time and extraction pressure. A total of 15 batches were analysed for process development using a two-level, full factorial design of experiments for three variable factors over eleven batches. The initial eleven batches demonstrated that CO2 flow rate has the most influence on the overall yield and recovery of the key cannabinoids, particularly CBD. The additional four batches were conducted as replicated runs at high flow rates to determine reproducibility. The highest extraction weight of 71 g (7.1%) was obtained under high flow rate (150 g/min), with long extraction time (600 min) at high pressure (320 bar). This method also gave the best recoveries of THC and CBD. This is the first study to report the repeated extraction of large amounts of cannabis (total 15 kg) to optimise the CO2 SFE extraction process for a pharmaceutical product.
Assuntos
Cannabis/química , Cromatografia com Fluido Supercrítico/métodos , Maconha Medicinal/isolamento & purificação , Extratos Vegetais/química , Biomassa , Canabinoides/química , Canabinoides/isolamento & purificação , Cannabis/metabolismo , Maconha Medicinal/química , Pressão , Reprodutibilidade dos Testes , Projetos de Pesquisa , Fatores de TempoRESUMO
The present study was designed to analyse soils by different methodologies to determine the range of traits that could be investigated for the study of environmental soil samples. Proton nuclear magnetic resonance spectroscopy ((1) H NMR) was employed for metametabolomic analysis of soils from agricultural systems (managed) or from soils in a native state (remnant). The metabolomic methodologies employed (grinding and extraction with sonication) are capable of breaking up cell walls and so enabled characterisation of both extracellular and intracellular components of soil. Diffuse mid-infrared spectroscopy (MIR) data was obtained for the same sample sets, and in addition, elemental composition was determined by conventional laboratory chemical testing methods. Also investigated was the antibiotic activity of the soil extracts. Resilient or suppressive soils are valued in the agricultural setting as they convey disease resistance (against bacterial and fungal pathogens) to crop plants. In order to test if any such biological activity could be detected in the soils, the extracts were tested against the bacteria Bacillus subtilis. Several extracts showed strong growth inhibition against the bacteria with the most active clustered together in principle component analysis (PCA) of the metabolomic data. The study showed that the NMR metabolomic approach corresponds more accurately to land use and biochemical properties potentially associated with suppression, while MIR data correlated well to inorganic chemical analysis. Thus, the study demonstrates the utility in combining these spectroscopic methods for soil analysis.