Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 32(8): 989-1002, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-35909165

RESUMO

Cephalopods, in particular octopus (Octopus vulgaris), have the ability to alter their appearance or body pattern by showing a wide range of camouflage by virtue of their chromatophores, which contain nanostructured granules of ommochrome pigments. Recently, the antioxidant and antimicrobial activities of ommochromes have become of great interest; therefore, in this study, the pH-dependent redox effect of the extraction solvent on the antioxidant potential and the structural characterization of the pigments were evaluated. Cell viability was determined by the microdilution method in broth by turbidity, MTT, resazurin, as well as fluorescence microscopy kit assays. A Live/Dead Double Staining Kit and an ROS Kit were used to elucidate the possible inhibitory mechanisms of ommochromes against bacterial and fungal strains. The results obtained revealed that the redox state alters the color changes of the ommochromes and is dependent on the pH in the extraction solvent. Natural phenoxazinone (ommochromes) is moderately toxic to the pathogens Staphylococcus aureus, Bacillus subtilis, Salmonella Typhimurium and Candida albicans, while the species Pseudomonas aeruginosa and Pseudomonas fluorescens, and the filamentous fungi Aspergillus parasiticus, Alternaria spp. and Fusarium verticillioides, were tolerant to these pigments. UV/visible spectral scanning and Fourier- transform infrared spectroscopy (FTIR) suggest the presence of reduced ommatin in methanol/ HCl extract with high intrinsic fluorescence.


Assuntos
Octopodiformes , Animais , Antioxidantes , Bactérias , Candida albicans , Fungos , Testes de Sensibilidade Microbiana , Oxazinas , Fenotiazinas , Extratos Vegetais , Solventes
2.
Int J Mol Sci ; 17(12)2016 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-27886145

RESUMO

In marine organisms primarily intended for human consumption, the quality of the muscle and the extracted oils may be affected by lipid oxidation during storage, even at low temperatures. This has led to a search for alternatives to maintain quality. In this sense, antioxidant compounds have been used to prevent such lipid deterioration. Among the most used compounds are tocopherols, which, due to their natural origin, have become an excellent alternative to prevent or retard lipid oxidation and maintain the quality of marine products. Tocopherols as antioxidants have been studied both exogenously and endogenously. Exogenous tocopherols are often used by incorporating them into plastic packaging films or adding them directly to fish oil. It has been observed that exogenous tocopherols incorporated in low concentrations maintain the quality of both muscle and the extracted oils during food storage. However, it has been reported that tocopherols applied at higher concentrations act as a prooxidant molecule, probably because their reactions with singlet oxygen may generate free radicals and cause the oxidation of polyunsaturated fatty acids in fish oils. However, when tocopherols are included in a fish diet (endogenous tocopherols), the antioxidant effect on the muscle lipids is more effective due to their incorporation into the membrane lipids, which can help extend the shelf life of seafood by reducing the lipid deterioration that occurs due to antioxidant synergy with other phenolic compounds used supplements in fish muscle. This review focuses on the most important studies in this field and highlights the potential of using tocopherols as antioxidants in marine oils.


Assuntos
Tocoferóis/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Gorduras Insaturadas na Dieta/metabolismo , Óleos de Peixe/metabolismo , Oxirredução/efeitos dos fármacos , Tocoferóis/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-23401709

RESUMO

Fractions from an organic extract from fresh octopus (Paraoctopus limaculatus) were studied for biological activities such as antimutagenic and antiproliferative properties using Salmonella tester strains TA98 and TA100 with metabolic activation (S9) and a cancer cell line (B-cell lymphoma), respectively. A chloroform extract obtained from octopus tentacles was sequentially fractionated using thin layer chromatography (TLC), and each fraction was tested for antimutagenic and antiproliferative activities. Organic extract reduced the number of revertants caused by aflatoxin B(1) showing a dose-response type of relationship. Sequential TLC fractionation of the active extracts produced several antimutagenic and/or antiproliferative fractions. Based on the results obtained, the isolated fractions obtained from octopus contain compounds with chemoprotective properties that reduce the mutagenicity of AFB(1) and proliferation of cancer cell lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA