Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nutr Biochem ; 111: 109153, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150680

RESUMO

This study aimed to characterize the potential beneficial effects of chronic docosahexaenoic acid (DHA) supplementation on restoring subcutaneous white adipose tissue (scWAT) plasticity in obese aged female mice. Two-month-old female C57BL/6J mice received a control (CT) or a high fat diet (HFD) for 4 months. Then, 6-month-old diet-induced obese (DIO) mice were distributed into the DIO and the DIOMEG group (fed with a DHA-enriched HFD) up to 18 months. In scWAT, the DHA-enriched diet reduced the mean adipocyte size and reversed the upregulation of lipogenic genes induced by the HFD, reaching values even lower than those observed in CT animals. DIO mice exhibited an up-regulation of lipolytic and fatty oxidation gene expressions that was reversed in DHA-supplemented mice except for Cpt1a mRNA levels, which were higher in DIOMEG as compared to CT mice. DHA restored the increase of proinflammatory genes observed in scWAT of DIO mice. While no changes were observed in total macrophage F4/80+/CD11b+ content, the DHA treatment switched scWAT macrophages profile by reducing the M1 marker Cd11c and increasing the M2 marker CD206. These events occurred alongside with a stimulation of beige adipocyte specific genes, the restoration of UCP1 and pAKT/AKT ratio, and a recovery of the HFD-induced Fgf21 upregulation. In summary, DHA supplementation induced a metabolic remodeling of scWAT to a healthier phenotype in aged obese mice by modulating genes controlling lipid accumulation in adipocytes, reducing the inflammatory status, and inducing beige adipocyte markers in obese aged mice.


Assuntos
Ácidos Docosa-Hexaenoicos , Obesidade , Feminino , Camundongos , Animais , Camundongos Obesos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Obesidade/metabolismo , Camundongos Endogâmicos C57BL , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gordura Subcutânea/metabolismo , Suplementos Nutricionais , Tecido Adiposo/metabolismo
2.
Nutrients ; 14(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296923

RESUMO

Obesity and aging promote chronic low-grade systemic inflammation. The aim of the study was to analyze the effects of long-term physical exercise and/or omega-3 fatty acid Docosahexaenoic acid (DHA) supplementation on genes or proteins related to muscle metabolism, inflammation, muscle damage/regeneration and myokine expression in aged and obese mice. Two-month-old C57BL/6J female mice received a control or a high-fat diet for 4 months. Then, the diet-induced obese (DIO) mice were distributed into four groups: DIO, DIO + DHA, DIO + EX (treadmill training) and DIO + DHA + EX up to 18 months. Mice fed a control diet were sacrificed at 2, 6 and 18 months. Aging increased the mRNA expression of Tnf-α and decreased the expression of genes related to glucose uptake (Glut1, Glut4), muscle atrophy (Murf1, Atrogin-1, Cas-9) and myokines (Metrnl, Il-6). In aged DIO mice, exercise restored several of these changes. It increased the expression of genes related to glucose uptake (Glut1, Glut4), fatty acid oxidation (Cpt1b, Acox), myokine expression (Fndc5, Il-6) and protein turnover, decreased Tnf-α expression and increased p-AKT/AKT ratio. No additional effects were observed when combining exercise and DHA. These data suggest the effectiveness of long-term training to prevent the deleterious effects of aging and obesity on muscle dysfunction.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Feminino , Camundongos , Animais , Camundongos Obesos , Ácidos Docosa-Hexaenoicos/farmacologia , Transportador de Glucose Tipo 1 , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica , Obesidade/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Glucose/metabolismo , Músculos/metabolismo , Envelhecimento , Inflamação , RNA Mensageiro , Suplementos Nutricionais
3.
Nutrients ; 13(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34371972

RESUMO

Resistance training (RT) and n-3 polyunsaturated fatty acids (n-3 PUFA) supplementation have emerged as strategies to improve muscle function in older adults. Overweight/obese postmenopausal women (55-70 years) were randomly allocated to one of four experimental groups, receiving placebo (olive oil) or docosahexaenoic acid (DHA)-rich n-3 PUFA supplementation alone or in combination with a supervised RT-program for 16 weeks. At baseline and at end of the trial, body composition, anthropometrical measures, blood pressure and serum glucose and lipid biomarkers were analyzed. Oral glucose tolerance tests (OGTT) and strength tests were also performed. All groups exhibit a similar moderate reduction in body weight and fat mass, but the RT-groups maintained bone mineral content, increased upper limbs lean mass, decreased lower limbs fat mass, and increased muscle strength and quality compared to untrained-groups. The RT-program also improved glucose tolerance (lowering the OGTT incremental area under the curve). The DHA-rich supplementation lowered diastolic blood pressure and circulating triglycerides and increased muscle quality in lower limbs. In conclusion, 16-week RT-program improved segmented body composition, bone mineral content, and glucose tolerance, while the DHA-rich supplement had beneficial effects on cardiovascular health markers in overweight/obese postmenopausal women. No synergistic effects were observed for DHA supplementation and RT-program combination.


Assuntos
Composição Corporal , Fatores de Risco Cardiometabólico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Sobrepeso/terapia , Pós-Menopausa , Treinamento Resistido , Idoso , Glicemia/análise , Suplementos Nutricionais , Método Duplo-Cego , Ácidos Graxos Ômega-3/administração & dosagem , Feminino , Teste de Tolerância a Glucose , Humanos , Metabolismo dos Lipídeos , Pessoa de Meia-Idade , Força Muscular , Obesidade/fisiopatologia , Obesidade/terapia , Sobrepeso/fisiopatologia , Placebos
4.
FASEB J ; 35(6): e21592, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33960028

RESUMO

Brown adipose tissue (BAT) dysfunction in aging and obesity has been related to chronic unresolved inflammation, which could be mediated by an impaired production of specialized proresolving lipid mediators (SPMs), such as Lipoxins-LXs, Resolvins-Rvs, Protectins-PDs, and Maresins-MaRs. Our aim was to characterize the changes in BAT SPMs signatures and their association with BAT dysfunction during aging, especially under obesogenic conditions, and their modulation by a docosahexaenoic acid (DHA)-rich diet. Lipidomic, functional, and molecular studies were performed in BAT of 2- and 18-month-old lean (CT) female mice and in 18-month-old diet-induced obese (DIO) mice fed with a high-fat diet (HFD), or a DHA-enriched HFD. Aging downregulated Prdm16 and UCP1 levels, especially in DIO mice, while DHA partially restored them. Arachidonic acid (AA)-derived LXs and DHA-derived MaRs and PDs were the most abundant SPMs in BAT of young CT mice. Interestingly, the sum of LXs and of PDs were significantly lower in aged DIO mice compared to young CT mice. Some of the SPMs most significantly reduced in obese-aged mice included LXB4 , MaR2, 4S,14S-diHDHA, 10S,17S-diHDHA (a.k.a. PDX), and RvD6. In contrast, DHA increased DHA-derived SPMs, without modifying LXs. However, MicroPET studies showed that DHA was not able to counteract the impaired cold exposure response in BAT of obese-aged mice. Our data suggest that a defective SPMs production could underlie the decrease of BAT activity observed in obese-aged mice, and highlight the relevance to further characterize the physiological role and therapeutic potential of specific SPMs on BAT development and function.


Assuntos
Tecido Adiposo Marrom/metabolismo , Envelhecimento/patologia , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Lipídeos/análise , Obesidade/fisiopatologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/patologia , Animais , Dieta Hiperlipídica , Feminino , Metabolismo dos Lipídeos , Lipidômica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Nutrients ; 13(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546405

RESUMO

Obesity and aging are associated to non-alcoholic fatty liver disease (NAFLD) development. Here, we investigate whether long-term feeding with a docosahexaenoic acid (DHA)-enriched diet and aerobic exercise, alone or in combination, are effective in ameliorating NAFLD in aged obese mice. Two-month-old female C57BL/6J mice received control or high fat diet (HFD) for 4 months. Then, the diet-induced obese (DIO) mice were distributed into four groups: DIO, DIO + DHA (15% dietary lipids replaced by a DHA-rich concentrate), DIO + EX (treadmill running), and DIO + DHA + EX up to 18 months. The DHA-rich diet reduced liver steatosis in DIO mice, decreasing lipogenic genes (Dgat2, Scd1, Srebp1c), and upregulated lipid catabolism genes (Hsl/Acox) expression. A similar pattern was observed in the DIO + EX group. The combination of DHA + exercise potentiated an increase in Cpt1a and Ppara genes, and AMPK activation, key regulators of fatty acid oxidation. Exercise, alone or in combination with DHA, significantly reversed the induction of proinflammatory genes (Mcp1, Il6, Tnfα, Tlr4) in DIO mice. DHA supplementation was effective in preventing the alterations induced by the HFD in endoplasmic reticulum stress-related genes (Ern1/Xbp1) and autophagy markers (LC3II/I ratio, p62, Atg7). In summary, long-term DHA supplementation and/or exercise could be helpful to delay NAFLD progression during aging in obesity.


Assuntos
Envelhecimento/fisiologia , Ácidos Docosa-Hexaenoicos/administração & dosagem , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/complicações , Condicionamento Físico Animal/fisiologia , Animais , Autofagia/genética , Autofagia/fisiologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Inflamação/genética , Metabolismo dos Lipídeos , Lipogênese/genética , Fígado/química , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/etiologia , RNA Mensageiro/análise
6.
Appl Physiol Nutr Metab ; 45(9): 957-967, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32176854

RESUMO

Obesity is characterized by excessive fat accumulation and inflammation. Aging has also been characterized as an inflammatory condition, frequently accompanied by accumulation of visceral fat. Beneficial effects of exercise and n-3 long-chain polyunsaturated fatty acids in metabolic disorders have been described. Glucose transporter 12 (GLUT12) is one of the less investigated members of the GLUT family. Glucose, insulin, and tumor necrosis factor alpha (TNF-α) induce GLUT12 translocation to the membrane in muscle, adipose tissue, and intestine. We aimed to investigate GLUT12 expression in obesity and aging, and under diet supplementation with docosahexaenoic acid (DHA) alone or in combination with physical exercise in mice. Aging increased GLUT12 expression in intestine, kidney, and adipose tissue, whereas obesity reduced it. No changes on the transporter occurred in skeletal muscle. In obese 18-month-old mice, DHA further decreased GLUT12 in the 4 organs. Aerobic exercise alone did not modify GLUT12, but the changes triggered by exercise were able to prevent the DHA-diminishing effect, and almost restored GLUT12 basal levels. In conclusion, the downregulation of metabolism in aging would be a stimulus to upregulate GLUT12 expression. Contrary, obesity, an excessive energy condition, would induce GLUT12 downregulation. The combination of exercise and DHA would contribute to restore basal function of GLUT12. Novelty In small intestine, kidney and adipose tissue aging increases GLUT12 protein expression whereas obesity reduces it. Dietary DHA decreases GLUT12 in small intestine, kidney, adipose tissue and skeletal muscle. Exercise alone does not modify GLUT12 expression, nevertheless exercise prevents the DHA-diminishing effect on GLUT12.


Assuntos
Envelhecimento/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal , Tecido Adiposo/metabolismo , Animais , Células CACO-2 , Dieta , Feminino , Humanos , Intestino Delgado/metabolismo , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo
7.
J Physiol Biochem ; 76(2): 251-267, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31853728

RESUMO

Adipose tissue dysfunction represents the hallmark of obesity. Brown/beige adipose tissues play a crucial role in maintaining energy homeostasis through non-shivering thermogenesis. Brown adipose tissue (BAT) activity has been inversely related to body fatness, suggesting that BAT activation is protective against obesity. BAT plays also a key role in the control of triglyceride clearance, glucose homeostasis, and insulin sensitivity. Therefore, BAT/beige activation has been proposed as a strategy to prevent or ameliorate obesity development and associated commorbidities. In the last few years, a variety of preclinical studies have proposed n-3 polyunsaturated fatty acids (n-3 PUFAs) as novel inducers of BAT activity and white adipose tissue browning. Here, we review the in vitro and in vivo available evidences of the thermogenic properties of n-3 PUFAs, especially focusing on the molecular and cellular physiological mechanisms involved. Finally, we also discuss the challenges and future perspectives to better characterize the therapeutic potential of n-3 PUFAs as browning agents, especially in humans.


Assuntos
Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Ácidos Graxos Ômega-3 , Obesidade , Animais , Células Cultivadas , Metabolismo Energético , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/fisiologia , Humanos , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos , Termogênese
8.
Food Funct ; 9(5): 3028-3036, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29766165

RESUMO

FGF21 has emerged as a key metabolism and energy homeostasis regulator. Dietary supplementation with eicosapentaenoic acid (EPA) and/or α-lipoic acid (LIP) has shown beneficial effects on obesity. In this study, we evaluated EPA and/or LIP effects on plasma FGF21 and the fatty acid (FA) profile in overweight/obese women following hypocaloric diets. At the baseline, FGF21 levels were negatively related to the AST/ALT ratio and HMW adiponectin. The weight loss did not cause any significant changes in FGF21 levels, but after the intervention FGF21 increased in EPA-supplemented groups compared to non-EPA-supplemented groups. EPA supplementation decreased the plasma n-6-PUFA content and increased n-3-PUFAs, mainly EPA and DPA, but not DHA. In the LIP-alone supplemented group a decrease in the total SFA and n-6-PUFA content was observed after the supplementation. Furthermore, EPA affected the desaturase activity, lowering Δ4D and raising Δ5/6D. These effects were not observed in the LIP-supplemented groups. Besides, the changes in FGF21 levels were associated with the changes in EPA, n-3-PUFAs, Δ5/6D, and n-6/n-3 PUFA ratio. Altogether, our study suggests that n-3-PUFAs influence FGF21 levels in obesity, although the specific mechanisms implicated remain to be elucidated.


Assuntos
Suplementos Nutricionais/análise , Ácido Eicosapentaenoico/administração & dosagem , Ácidos Graxos/química , Fatores de Crescimento de Fibroblastos/sangue , Obesidade/tratamento farmacológico , Sobrepeso/tratamento farmacológico , Adulto , Restrição Calórica , Terapia Combinada , Ácidos Graxos/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/genética , Humanos , Obesidade/dietoterapia , Obesidade/metabolismo , Sobrepeso/dietoterapia , Sobrepeso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA