Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Physiol ; 6: 269, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500555

RESUMO

Type 2 diabetes (DM2) increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR) with spironolactone decreases reactive oxygen species (ROS)-associated vascular dysfunction and improves vascular nitric oxide (NO) signaling in diabetes. Leptin receptor knockout [LepR(db)/LepR(db) (db/db)] mice, a model of DM2, and their counterpart controls [LepR(db)/LepR(+), (db/+) mice] received spironolactone (50 mg/kg body weight/day) or vehicle (ethanol 1%) via oral per gavage for 6 weeks. Spironolactone treatment abolished endothelial dysfunction and increased endothelial nitric oxide synthase (eNOS) phosphorylation (Ser(1177)) in arteries from db/db mice, determined by acetylcholine-induced relaxation and Western Blot analysis, respectively. MR antagonist therapy also abrogated augmented ROS-generation in aorta from diabetic mice, determined by lucigenin luminescence assay. Spironolactone treatment increased superoxide dismutase-1 and catalase expression, improved sodium nitroprusside and BAY 41-2272-induced relaxation, and increased soluble guanylyl cyclase (sGC) ß subunit expression in arteries from db/db mice. Our results demonstrate that spironolactone decreases diabetes-associated vascular oxidative stress and prevents vascular dysfunction through processes involving increased expression of antioxidant enzymes and sGC. These findings further elucidate redox-sensitive mechanisms whereby spironolactone protects against vascular injury in diabetes.

2.
Life Sci ; 91(1-2): 14-9, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22677436

RESUMO

AIMS: The purpose of this study was to examine whether the use of intraperitoneal or intrathecal amitriptyline combined with electroacupuncture modifies the tail-flick reflex and incision pain in rats that normally do not have analgesia to electroacupuncture in the tail-flick test (non-responder rats). MAIN METHODS: Changes in the nociceptive threshold of intraperitoneal or intrathecal saline- or amitriptyline-treated non-responder rats were evaluated using the tail-flick or incision pain tests before, during and after a 20-min period of electroacupuncture, applied at 2 Hz to the Zusanli and Sanynjiao acupoints. Amitriptyline was used at doses of 0.8 mg/kg or 30 µg/kg by intraperitoneal or intrathecal route, respectively. At these doses, amitriptyline has no effect against thermal or incision pain in rats. KEY FINDINGS: Rats selected as non-responders to the analgesic effect of electroacupuncture 2 Hz in tail-flick and incision pain tests become responders after an intraperitoneal or intrathecal injection of amitriptyline. SIGNIFICANCE: Amitriptyline converts non-responder rats to rats that respond to electroacupuncture with analgesia in a model of thermal phasic pain and anti-hyperalgesia in a model of incision pain.


Assuntos
Amitriptilina/uso terapêutico , Eletroacupuntura , Dor Nociceptiva/terapia , Limiar da Dor/efeitos dos fármacos , Analgésicos não Narcóticos/uso terapêutico , Animais , Terapia Combinada , Infusões Parenterais , Injeções Espinhais , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA