Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(33): 29655-29666, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31359759

RESUMO

Ferroptosis is an iron-dependent cell death pathway that can eradicate certain apoptosis-insensitive cancer cells. The ferroptosis-inducing molecules are tailored lipid peroxides whose efficacy is compromised in hypoxic solid tumor and lack of tumor selectivity. It has been demonstrated that ascorbate (Asc) in pharmacological concentrations can selectively kill cancer cells via accumulating hydrogen peroxide (H2O2) only in tumor extracellular fluids. It was hypothesized that Asc-induced, selective enrichment of H2O2 in tumor coupled with Fe3+ codelivery could simultaneously address the above two problems via boosting the levels of hydroxyl radicals and oxygen in the tumor site to ease peroxidation initiation and propagation, respectively. The aim of this work was to synergize the action of Asc with lipid-coated calcium phosphate (CaP) hybrid nanocarrier that can concurrently load polar Fe3+ and nonpolar RSL3, a ferroptosis inducer with the mechanism of inhibiting lipid peroxide repair enzyme (GPX4). The hybrid nanocarriers showed accelerated cargo release at acidic conditions (pH 5.0). The combinational approach (Asc plus nanocarrier) produced significantly elevated levels of hydroxyl radicals, lipid peroxides, and depleted glutathione under hypoxia, which was accompanied with the strong cytotoxicity (IC50 = 1.2 ± 0.2 µM) in the model 4 T1 cells. In the 4 T1 tumor-bearing xenograft mouse model, the intravenous nanocarrier delivery plus intraperitoneal Asc administration resulted in a superior antitumor performance in terms of tumor suppression, which did not produce supplementary adverse effects to the healthy organs. This work provides a novel approach to enhance the potency of ferroptotic nanomedicine against solid tumors without inducing additional side effects.


Assuntos
Antineoplásicos/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Fosfatos de Cálcio , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Ferroptose/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxidos Lipídicos/química , Peróxidos Lipídicos/metabolismo , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Control Release ; 286: 381-393, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30098375

RESUMO

Traditional antitumor nanomedicines have been suffering from the poor tumor targeting (ca. 1%) by the enhanced permeability and retention (EPR) effect, and the low drug loading (<5%). It was postulated that engineering all-active nanoplatform could increase the therapeutic efficacy to enable the nanocarrier function as both vehicle and active ingredient. To achieve this, a photosensitizer, Ce6 was encapsulated within polymeric micelles with unsaturated fatty acids as the building blocks. Upon light irradiation, the singlet oxygen produced by Ce6 induced lipid peroxidation, resulting in the generation of both active free radicals and aldehydes. These supplementary radicals could exert cytotoxic effect for direct killing tumor cells. The aldehyde end-products induced significant cell cycle arrest at G2 phase in 4T1 cells. The peroxidation process also facilitated the on-demand disassembly of micelles and rapid release of Ce6 to maximize the therapeutic effect of singlet oxygen. These all-active micelles showed a significantly enhanced cytotoxicity with the half maximal inhibitory concentration (IC50) of 0.6 ±â€¯0.2 µg/mL in contrast to the control micelles at 3.4 ±â€¯0.5 µg/mL. The improved antitumor efficacy of the all-active micelles was also demonstrated in the 4T1 tumor-bearing mice in vivo. The current work provides a facile approach to enhance the antitumor efficacy of PDT nanomedicine using the biocompatible fatty acids, which can be applied to various antitumor drugs and unsaturated lipids.


Assuntos
Preparações de Ação Retardada/metabolismo , Ácidos Graxos/metabolismo , Peroxidação de Lipídeos , Micelas , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Animais , Linhagem Celular Tumoral , Clorofilídeos , Feminino , Luz , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Neoplasias/patologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Oxigênio Singlete/metabolismo
3.
Analyst ; 139(15): 3796-803, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24899364

RESUMO

A highly sensitive and selective chemiluminescent (CL) biosensor for adenosine triphosphate (ATP) was developed by taking advantage of the ATP-dependent enzymatic reaction (ATP-DER), the powerful signal amplification capability of rolling circle amplification (RCA), and hydroxylamine-amplified gold nanoparticles (Au NPs). The strategy relies on the ability of ATP, a cofactor of T4 DNA ligase, to trigger the ligation-RCA reaction. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction between the two ends of the padlock probe, producing a closed circular DNA template that initiates the RCA reaction with phi29 DNA polymerase and dNTP. Therein, many complementary copies of the circular template can be generated. The ATP-DER is eventually converted into a detectable CL signal after a series of processes, including gold probe hybridization, hydroxylamine amplification, and oxidative gold metal dissolution coupled with a simple and sensitive luminol CL reaction. The CL signal is directly proportional to the ATP level. The results showed that the detection limit of the assay is 100 pM of ATP, which compares favorably with those of other ATP detection techniques. In addition, by taking advantage of ATP-DER, the proposed CL sensing system exhibits extraordinary specificity towards ATP and could distinguish the target molecule ATP from its analogues. The proposed method provides a new and versatile platform for the design of novel DNA ligation reaction-based CL sensing systems for other cofactors. This novel ATP-DER based CL sensing system may find wide applications in clinical diagnosis as well as in environmental and biomedical fields.


Assuntos
Trifosfato de Adenosina/sangue , Ouro/química , Hidroxilamina/química , Medições Luminescentes/métodos , Nanopartículas Metálicas/química , Trifosfato de Adenosina/análise , Técnicas Biossensoriais/métodos , Humanos , Limite de Detecção , Luminol/análise , Técnicas de Amplificação de Ácido Nucleico/métodos
4.
Yao Xue Xue Bao ; 48(10): 1585-9, 2013 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-24417086

RESUMO

Two sample pretreatment methods of pesticide residues in Panax notoginseng of Chinese traditional medicine were developed. For Method I, the residues were extracted from homogenized tissue with n-hexane-dichloromethane (6:4) by means of ultrasonication, the crude extract was purified by an Envi-carb/NH2 solid-phase extraction (SPE) column. For Method II, matrix solid-phase dispersion (MSPD) technique was used for extracting and cleaning up. The eluates were concentrated by rotary evaporation, and then were redissolved in dichloromethane prior to GC-MS determination. The determination was performed in selected ion monitoring (SIM) mode with the external calibration for quantitative analysis. Under the optimal conditions, the results indicated that the methods are easier and faster, the recoveries of method I for the spiked standards at concentration of 0.01, 0.5, and 2.0 mg x kg(-1) were 81.90%-102.10% with the relative standard deviations (RSDs) of 3.60%-7.10%. The recoveries of method II were 96.26%-104.20% with the RSDs of 3.52%-7.94%. The detection limits (S/N) for residues of pesticides were in the range of 0.48-1.34 ng x g(-1). The results indicated that these multiresidue analysis methods can meet the requirements for determination of residue pesticides and can be appropriate for trace analysis of residue pesticides in Panax notoginseng.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Panax notoginseng/química , Resíduos de Praguicidas/análise , Extração em Fase Sólida , Cromatografia Gasosa-Espectrometria de Massas , Hexanos/química , Cloreto de Metileno/química , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA