Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chin Herb Med ; 16(1): 3-12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375050

RESUMO

To promote the development of extracellular vesicles of herbal medicine especially the establishment of standardization, led by the National Expert Committee on Research and Application of Chinese Herbal Vesicles, research experts in the field of herbal medicine and extracellular vesicles were invited nationwide with the support of the Expert Committee on Research and Application of Chinese Herbal Vesicles, Professional Committee on Extracellular Vesicle Research and Application, Chinese Society of Research Hospitals and the Guangdong Engineering Research Center of Chinese Herbal Vesicles. Based on the collation of relevant literature, we have adopted the Delphi method, the consensus meeting method combined with the nominal group method to form a discussion draft of "Consensus statement on research and application of Chinese herbal medicine derived extracellular vesicles-like particles (2023)". The first draft was discussed in online and offline meetings on October 12, 14, November 2, 2022 and April and May 2023 on the current status of research, nomenclature, isolation methods, quality standards and research applications of extracellular vesicles of Chinese herbal medicines, and 13 consensus opinions were finally formed. At the Third Academic Conference on Research and Application of Chinese Herbal Vesicles, held on May 26, 2023, Kewei Zhao, convenor of the consensus, presented and read the consensus to the experts of the Expert Committee on Research and Application of Chinese Herbal Vesicles. The consensus highlights the characteristics and advantages of Chinese medicine, inherits the essence, and keeps the righteousness and innovation, aiming to provide a reference for colleagues engaged in research and application of Chinese herbal vesicles at home and abroad, decode the mystery behind Chinese herbal vesicles together, establish a safe, effective and controllable accurate Chinese herbal vesicle prevention and treatment system, and build a bridge for Chinese medicine to the world.

2.
Nat Commun ; 14(1): 5575, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696820

RESUMO

Embolization (utilizing embolic materials to block blood vessels) has been considered one of the most promising strategies for clinical disease treatments. However, the existing embolic materials have poor embolization effectiveness, posing a great challenge to highly efficient embolization. In this study, we construct Janus particle-engineered structural lipiodol droplets by programming the self-assembly of Janus particles at the lipiodol-water interface. As a result, we achieve highly efficient renal embolization in rabbits. The obtained structural lipiodol droplets exhibit excellent mechanical stability and viscoelasticity, enabling them to closely pack together to efficiently embolize the feeding artery. They also feature good viscoelastic deformation capacities and can travel distally to embolize finer vasculatures down to 40 µm. After 14 days post-embolization, the Janus particle-engineered structural lipiodol droplets achieve efficient embolization without evidence of recanalization or non-target embolization, exhibiting embolization effectiveness superior to the clinical lipiodol-based emulsion. Our strategy provides an alternative approach to large-scale fabricate embolic materials for highly efficient embolization and exhibits good potential for clinical applications.


Assuntos
Óleo Etiodado , Nanopartículas Multifuncionais , Animais , Coelhos , Artérias , Bandagens , Rim
3.
Nano Lett ; 21(3): 1484-1492, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33475372

RESUMO

Existing nanoparticle-mediated drug delivery systems for glioma systemic chemotherapy remain a great challenge due to poor delivery efficiency resulting from the blood brain barrier/blood-(brain tumor) barrier (BBB/BBTB) and insufficient tumor penetration. Here, we demonstrate a distinct design by patching doxorubicin-loaded heparin-based nanoparticles (DNs) onto the surface of natural grapefruit extracellular vesicles (EVs), to fabricate biomimetic EV-DNs, achieving efficient drug delivery and thus significantly enhancing antiglioma efficacy. The patching strategy allows the unprecedented 4-fold drug loading capacity compared to traditional encapsulation for EVs. The biomimetic EV-DNs are enabled to bypass BBB/BBTB and penetrate into glioma tissues by receptor-mediated transcytosis and membrane fusion, greatly promoting cellular internalization and antiproliferation ability as well as extending circulation time. We demonstrate that a high-abundance accumulation of EV-DNs can be detected at glioma tissues, enabling the maximal brain tumor uptake of EV-DNs and great antiglioma efficacy in vivo.


Assuntos
Neoplasias Encefálicas , Citrus paradisi , Vesículas Extracelulares , Glioma , Nanopartículas , Biomimética , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Heparina , Humanos
4.
Langmuir ; 25(17): 10189-94, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19548635

RESUMO

The use of microwave irradiation to accelerate both inorganic and organic chemical reactions has attracted widespread attention. Generally, microwave-mediated synthesis of quantum dots (QDs) has been conducted in aqueous solution. Here, using commercial diesel and glycerol as reaction medium, a microwave-mediated nonaqueous method toward CdSe QDs with size-tunable photoluminescent properties produces oleic-acid-protected QDs at moderate reaction temperatures of 50-140 degrees C, which are much lower than the current temperature necessary for the synthesis of CdSe QDs in organic solvents. The appropriate condition optimization for high-quality CdSe QDs shows that different sizes of CdSe QDs with emission wavelengths between 450 and 600 nm have been synthesized through varying time, temperature, feed ratio, and reaction medium.


Assuntos
Micro-Ondas , Nanotecnologia/métodos , Pontos Quânticos , Cádmio/química , Cristalização , Metais , Microscopia Eletrônica de Transmissão/métodos , Óxidos/química , Fotoquímica/métodos , Selênio/química , Solventes/química , Espectrofotometria Ultravioleta/métodos , Temperatura , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA