Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 225: 119193, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209665

RESUMO

Internal phosphorus (P) loading can increase the P level in the water column and further sustains cyanobacterial blooms. This study focused on the role of benthic fauna bioturbation in affecting the sediment P release and the P level of water column in a eutrophic lake, Lake Taihu. The macrofauna density decreased from 4766.56 ± 10541.80 ind/m2 in 2007 to 345 ± 447.63 ind/m2 in 2020 due to the frequent bottom-water hypoxia in Lake Taihu. The reduced macrofauna density majorly resulted from Grandidierella taihuensis, Limnodrilus hoffmeisteri, and Tanypus chinensis larvae, and their total density decreased by approximately 97% in 2020 compared to 2007. G. taihuensis, one of the major benthic faunas, was further used as a representative to investigate the effects of bioturbation on sediment P release using high-resolution sampling and imaging techniques. The results show that G. taihuensis can increase the O2 penetration depth by more than 20 mm through bio-irrigation, and causes the redox conditions in burrows and surrounding sediments to change dramatically within a few minutes due to the intermittent ventilation. Subsequent oxidation of the soluble Fe(II) led to the formation of Fe-oxide bound P in the surface sediments, thereby increasing the P retention in the sediments. When the G. taihuensis density was 1563 ind/m2 at the sampling site, approximately 0.12 g m-2 yr-1 P can be retained in sediments. As previous studies have shown that L. hoffmeisteri and T. chinensis played a similar role in increasing the P retention in sediments through their bioturbation activities, the sharp decline in benthic fauna density and burrowing activities in Lake Taihu should be an important reason for maintaining the high P level in the water column by decreasing the P retention in sediments.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Lagos/microbiologia , Fósforo/análise , Eutrofização , Sedimentos Geológicos/microbiologia , Água , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Anfípodes/metabolismo , Compostos Ferrosos , China
2.
Sci Total Environ ; 851(Pt 2): 158088, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987223

RESUMO

The spatio-temporal variation of dissolved inorganic nitrogen (DIN: NH4+-N, NO2--N, and NO3--N) and dissolved reactive phosphorus (DRP) in Meiliang Bay of Lake Taihu sediments and their potential effects on the cyanobacterial blooms were studied. Monthly sampling was performed using high-resolution dialysis sampling devices (HR-Peeper) and two important results were observed in April (the initiation period of cyanobacterial bloom) and June-August (the maintenance period of cyanobacterial blooms). In April, high concentrations of dissolved NO2--N and NO3--N, probably caused by the groundwater influx, were observed in deep anoxic sediments (below 110 mm). NO2--N and NO3--N are good electron acceptors for the mineralization of organic P under anaerobic conditions and should lead to an increase in DRP concentrations in sediments, DRP released from sediments thus further stimulating the cyanobacterial growth and the outbreak of severe cyanobacterial blooms in May due to the extremely low concentrations of DRP in the water body. From June to August, high concentrations of NO2--N, NO3--N, and DRP were observed in the surface sediment, which was caused by the release of NH4+-N from the mineralization of cyanobacterial debris. This should play an important role in maintaining cyanobacterial growth, especially in stimulating the occurrence of cyanobacterial blooms during September, when N and P were co-limited. This study revealed high-concentration DIN and DRP in Lake Taihu sediments potentially stimulated the initiation and maintenance of cyanobacterial blooms.


Assuntos
Cianobactérias , Lagos , Fósforo/análise , Nitrogênio/análise , Eutrofização , Dióxido de Nitrogênio , Água , China
3.
Sci Total Environ ; 791: 148039, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118662

RESUMO

Microbial activity can enhance the sequestration of phosphorus (P) in sediments, but little is known about the mechanisms behind it. In this study, sediment cores were sampled from the most eutrophic Meiliang Bay of Lake Taihu, and three treatments were set up in a laboratory incubation experiment, involving (a) the non-treated sediment cores, (b) inoculation, and (c) sterilization. The dissolved and labile iron (Fe) and P were obtained by high-resolution dialysis and the diffusive gradients in thin films (DGT) technique, respectively. AgI-based DGT was used for measuring the 2D distribution of labile sulfide. The bacterial community was investigated using a scanning electron microscope and 16S rRNA high throughput sequencing technique. The results showed that sterilization reduced the capacity of sediment to immobilize P, and that the critical sediment depth layer for microbial P sequestration was 0-10 mm. In addition, sterilization or inoculation significantly changes the structure of bacterial communities. Fe or S oxidation under micro-aerobic or anaerobic conditions played an important role in bacterial retention of P in the sediments. Nitrate-reducing coupling Fe(II)-oxidizing bacteria (Acidovorax) in the inoculated sediment and electrogenic sulfur-oxidizing bacteria (Candidatus Electronema) in the non-treated sediment were identified as the key bacterial genera responsible for the retention of P in sediments. This implies that bacterial communities could quickly establish the ability for negative feedback regulation by inoculation once the function and structure of indigenous sediment bacteria are seriously impaired, although this needs further validation in the field.


Assuntos
Lagos , Poluentes Químicos da Água , Bactérias , China , Monitoramento Ambiental , Sedimentos Geológicos , Ferro/análise , Oxirredução , Fósforo/análise , RNA Ribossômico 16S , Diálise Renal , Sulfetos/análise , Poluentes Químicos da Água/análise
4.
Chemosphere ; 277: 130234, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33773313

RESUMO

Cobalt (Co) cycling is often dominated by its role as a micronutrient in marine, while little is known on its cycling in a shallow eutrophic lake. Monthly sampling was performed in eutrophic Meiliang Bay of Lake Taihu, combining two laboratory control experiments and in situ Co limitation bioassay experiments. The high-resolution dialysis and the diffusive gradients in thin films technique were used to detect dissolved and labile Co, respectively. The positive correlations between dissolved/labile Co and Mn in the sediments for 6 or 7 months demonstrated that the mobility of Co in the sediments was primarily controlled by Mn redox cycling in the field. However, it is unexpected that the dissolved and labile Co only showed a small change over one year irrespective of the significant fluctuation in dissolved/labile Mn, with the concentrations being as low as 1.08 ± 0.22 µg/L and 0.246 ± 0.091 µg/L for dissolved and labile Co in the surface 20 mm sediment, respectively. Cyanobacterial bloom simulation and aerobic-anaerobic-cyanobacterial addition experiments indicated that the level of Co in the sediment-overlying water system was strongly regulated by cyanobacterial uptake, followed by the degradation of Co-enriched cyanobacterial biomass, which offset the influence of Mn redox cycling on Co mobility in the sediment. The significant enhancement of Microcystis spp. biomass by Co addition further indicated that Co was the potential limiting nutrient for cyanobacterial blooms. This work provides new ideas for better management strategies of eutrophication in shallow lakes.


Assuntos
Lagos , Poluentes Químicos da Água , China , Cobalto , Monitoramento Ambiental , Eutrofização , Sedimentos Geológicos , Fósforo/análise , Diálise Renal , Poluentes Químicos da Água/análise
5.
Environ Pollut ; 246: 472-481, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30583155

RESUMO

Iron (Fe) and manganese (Mn) reactions have been regarded as the primary factors responsible for the mobilization of phosphorus (P) in lake sediments, although their individual roles are hard to distinguish. In this study, in situ mobilization of P, Fe and Mn in sediments was assessed by high resolution spatio-temporal sampling of their labile forms using diffusive gradient in thin films (DGT) and suction device (Rhizon) techniques. It was found that the monthly concentration distributions showed greater agreement and better correlation coefficients between labile P and labile Fe, than those between labile P and labile Mn, implying that Fe plays a key role in controlling P release in sediments. Furthermore, better correlations were observed between hourly changes in concentrations of soluble reactive phosphorus (SRP) and soluble Fe(II), than those between SRP and soluble Mn. Changes were observed under simulated anaerobic incubation conditions, suggesting that P release was caused by the reductive dissolution of Fe oxides. This was supported by the lack of influences on P release from reductive dissolution of Mn oxides in the sediment-water interface and top sediment layers under the anaerobic incubations. In simulated algal bloom experiments, positive correlations and consistent changes were observed between SRP and soluble Fe(II) concentrations, but not between SRP and soluble Mn concentrations. This further demonstrated the Fe-dependent and Mn-independent release of P in sediments. Therefore, Fe redox reactions have a high impact on P mobilization in sediments, while Mn redox reactions appear to have negligible influences.


Assuntos
Monitoramento Ambiental/métodos , Proliferação Nociva de Algas/fisiologia , Ferro/análise , Lagos/química , Manganês/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Simulação por Computador , Sedimentos Geológicos/química , Ferro/química , Manganês/química , Oxirredução , Óxidos/química , Fósforo/química , Água/química , Poluentes Químicos da Água/química
6.
Water Res ; 133: 153-164, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29407697

RESUMO

Algal growth causes a drastic change in aquatic conditions over a diel cycle, which may induce sensitive feedback systems in sediments, causing P release. In this study, a microcosm experiment was performed using a suction sampler (Rhizon) to observe changes in soluble reactive phosphorus (SRP) and soluble Fe(II) concentrations in the top 20 mm sediment layer on a 3-h time interval, at different phases of harmful algal bloom (HAB) development. The results showed that the algal blooms prevailed up to 15 days after incubation, after which the process of bloom collapse proceeded until the 70th day. The concentrations of pore-water soluble Fe(II) and SRP increased throughout the incubation period. Compared to day 1, maximum increases of 214% in soluble Fe(II) and 387% in SRP were observed at night during the bloom and collapse periods, respectively. The diffusive fluxes of Fe and P at the sediment-water interface (SWI) generally corresponded to their changes in concentrations. Hourly fluctuation in soluble Fe(II) and SRP concentrations were observed with two distinct concentration peaks occurred at 21:00 p.m. and 06:00 a.m. (or 03:00 a.m.), respectively. These findings suggest that Fe-P coupling mechanisms are responsible for the release of P from sediments. During the collapse period, soluble Fe(II) concentrations were suppressed by the increase of labile S(-II) at night. Meanwhile, SRP concentrations were decoupled from Fe cycling with small fluctuations (<11% RSD) on an hourly timescale, and the decomposition of algae was a dominant source contributing to the release of P from sediments. These results significantly improved the understanding of processes and mechanisms behind the stimulated release of P from sediments during HABs.


Assuntos
Eutrofização , Ferro/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/análise , Lagos
7.
Sci Total Environ ; 625: 872-884, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29306830

RESUMO

It is proposed that the internal loading of phosphorus (P) from sediments plays an important role in seasonal nitrogen (N) limitation for harmful algal blooms (HABs), although there is a lack of experimental evidence. In this study, an eutrophic bay from the large and shallow Lake Taihu was studied for investigating the contribution of internal P to N limitation over one-year field sampling (February 2016 to January 2017). A prebloom-bloom period was identified from February to August according to the increase in Chla concentration in the water column, during which the ratio of total N to total P (TN/TP) exponentially decreased with month from 43.4 to 7.4. High-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) analysis showed large variations in the vertical distribution of mobile P (SRP and DGT-labile P) in sediments, resulting in the SRP diffusion flux at the sediment-water interface ranging from -0.01 to 6.76mg/m2/d (minus sign denotes downward flux). Significant and linear correlations existed between SRP and soluble Fe(II) concentrations in pore water, reflecting that the spatial-temporal variation in mobile P was controlled by microbe-mediated Fe redox cycling. Mass estimation showed that the cumulative flux of SRP from sediments accounted for 54% of the increase in TP observed in the water column during the prebloom-bloom period. These findings are supported by the significantly negative correlation (p<0.01) observed between sediment SRP flux and water column TN/TP during the same period. Overall, these results provide solid evidence for the major role of internal P loading in causing N limitation during the prebloom-bloom period.


Assuntos
Sedimentos Geológicos/química , Proliferação Nociva de Algas , Lagos , Nitrogênio/química , Fósforo/química , Poluentes Químicos da Água/química , China , Monitoramento Ambiental , Estações do Ano
8.
Chemosphere ; 194: 614-621, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29241136

RESUMO

Sediments have a heterogeneous distribution of labile redox-sensitive elements due to a drastic downward transition from oxic to anoxic condition as a result of organic matter degradation. Characterization of the heterogeneous nature of sediments is vital for understanding of small-scale biogeochemical processes. However, there are limited reports on the related specialized methodology. In this study, the monthly distributions of labile phosphorus (P), a redox-sensitive limiting nutrient, were measured in the eutrophic Lake Taihu by Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) on a two-dimensional (2D) submillimeter level. Geographical information system (GIS) techniques were used to visualize the labile P distribution at such a micro-scale, showing that the DGT-labile P was low in winter and high in summer. Spatial analysis methods, including semivariogram and Moran's I, were used to quantify the spatial variation of DGT-labile P. The distribution of DGT-labile P had clear submillimeter-scale spatial patterns with significant spatial autocorrelation during the whole year and displayed seasonal changes. High values of labile P with strong spatial variation were observed in summer, while low values of labile P with relatively uniform spatial patterns were detected in winter, demonstrating the strong influences of temperature on the mobility and spatial distribution of P in sediment profiles.


Assuntos
Sedimentos Geológicos/química , Fósforo/química , Análise Espacial , Monitoramento Ambiental/métodos , Lagos/química , Oxirredução , Estações do Ano , Temperatura , Poluentes Químicos da Água/análise
9.
Chemosphere ; 186: 644-651, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28818591

RESUMO

There is a great heterogeneity in the distribution of mobile phosphorus (P) in natural sediments, while the assessment of P immobilization by amendment agents has mostly neglected this feature. In this study, the effects of aluminum sulfate (ALS) on P immobilization were investigated via a 60-day microcosm experiment using sampled sediment cores. The high-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) techniques were first employed to establish the profiles of soluble reactive P (SRP) and DGT-labile P in aluminum-amended sediments at 2 and 1 mm resolutions, respectively. Both concentrations of two mobile P forms decreased with increasing ALS dosages. The static layers with extremely low P concentrations (≤0.060 mg L-1 for SRP and ≤0.024 mg L-1 for DGT-labile P) were observed in the upper 6-16 mm sediment layers at 6-15 ALS/Pmobile treatments (mobile P is the sum of NH4Cl-P, BD-P, and NaOH-nrP; mol mol-1). The static layer was followed by an active layer in which the upward release potential (RAL) decreased from 33.4 to 21.9 for SRP and from 92.2 to 51.0 for DGT-labile P, respectively. As the formation of the static layer is a key to sustaining P immobilization in sediments, the minimal dosage of 9 ALS/Pmobile is required for ALS capping. Modeling with DGT Induced Fluxes in Sediments (DIFS) showed a greater increase in adsorption rate constant (k1, maximum 7.2-fold) compared to adsorption rate constant (k1, maximum 2.2-fold), demonstrating that the release of P from sediment solids became increasingly difficult after ALS amendment.


Assuntos
Alumínio/química , Sedimentos Geológicos/química , Fósforo/análise , Poluentes Químicos da Água/análise , Adsorção , Compostos de Alúmen , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental , Modelos Químicos , Fósforo/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA