RESUMO
Patient-derived xenograft (PDX) models are widely used as preclinical cancer models and are considered better than cell culture models in recapitulating the histological features, molecular characteristics and intratumoral heterogeneity (ITH) of human tumors. While the PDX model is commonly accepted for use in drug discovery and other translational studies, a growing body of evidence has suggested its limitations. Recently, the fidelity of cancer cells within a PDX has been questioned, which may impede the future application of these models. In this review, we will focus the variable phenotypes of xenograft tumors and the genomic instability and molecular inconsistency of PDX tumors after serial transplantation. Next, we will discuss the underlying mechanism of ITH and its clinical relevance. Stochastic selection bias in the sampling process and/or deterministic clonal dynamics due to murine selective pressure may have detrimental effects on the results of personalized medicine and drug screening studies. In addition, we aim to identify a possible solution for the issue of fidelity in current PDX models and to discuss emerging next-generation preclinical models.
Assuntos
Neoplasias/patologia , Transplante Heterólogo/métodos , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Xenoenxertos/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Peixe-ZebraRESUMO
OBJECTIVE: To study the effect of puerarin on matrix metalloproteinase-2 (MMP-2) gene and protein expression in human fetal scleral fibroblasts (HFSFs) exposed to extremely low frequency electromagnetic fields (ELF-EMF). METHODS: Cultured HFSFs were exposed to 0.2 mT ELF-EMF for 24 h. The experimental groups were divided into subgroups treated with 0, 0.1, 1 and 10 microM puerarin respectively. The expression of MMP-2 mRNA and protein were detected with real-time polymerase chain reaction and western-blot analysis respectively. RESULTS: MMP-2 mRNA and protein expression increased by 0.793 and 1.130 folds respectively under the exposure of ELF-EMFs at 0.2 mT flux density for 24 h. Puerarin at the concentration of 0.1 microM reversed this effect by 8.53% in mRNA and by 17.97% in protein expression (P < 0.05). The effect was more prominent at higher concentrations (1 and 10 microM, P < 0.01). CONCLUSION: Exposure to ELF-EMFs increased the expression of MMP-2 mRNA and protein in HFSF cells. Puerarin reversed the action to some extent in a specific concentration range. Our results implied that the puerarin might protect scleral tissue from increased expression induced by exposure to ELF-EMFs.