Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Sci Food Agric ; 103(5): 2631-2640, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36494899

RESUMO

BACKGROUND: Branched-chain fatty acid (BCFA) is effective in preventing and helping to treat neonatal necrotizing enterocolitis. It is essential to supplement goat-milk powder for formula-fed preterm infants with BCFA. In this study, the quality and microstructures of milk powders supplemented with different concentrations of BCFA were evaluated, using goat milk powder without BCFA as the control group (CG). RESULTS: In comparison with the CG, goat milk powder supplemented with BCFA exhibited smaller fat globules and a significant drop in overall particle size. During 16 weeks of storage, BCFA-supplemented groups showed suitable moisture content and viscosity and good solubility. The BCFA also helped reduce the number of folds on the surface of the milk powder particles. CONCLUSION: The findings of this study indicate that goat milk powders with BCFA exhibit differences in quality and microstructure in comparison with ordinary goat milk powder, which is relevant for the future development and application of BCFA in foods. © 2022 Society of Chemical Industry.


Assuntos
Cabras , Leite , Recém-Nascido , Animais , Humanos , Leite/química , Pós/análise , Recém-Nascido Prematuro , Ácidos Graxos/química
2.
Biomater Sci ; 10(17): 4785-4795, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35852125

RESUMO

Developing a small molecular photosensitizer to achieve multimodal phototherapy has recently garnered attention as a promising strategy for efficient cancer treatment. However, synthesis of a multifunctional small molecular photosensitizer has remained challenging. Here we report an aggregation-induced-emission (AIE)-featured luminogen (AIEgen) TPA-BTZ decorated with long and branched alkyl chains. TPA-BTZ shows long-wavelength emission at ca. 800 nm in the NIR-I region. Moreover, upon laser irradiation, TPA-BTZ could produce O2˙- and 1O2via both type I and type II mechanisms for enhanced photodynamic therapy (PDT). The propeller-like structure triphenylamine (TPA) rotators not only endow TPA-BTZ with AIE characteristics but also facilitate heat generation by intramolecular rotation for photothermal therapy (PTT). More importantly, long and branched alkyl chains can create intermolecular spatial isolation in the fabricated TPA-BTZ@PEG2000 nanoparticles (NPs) to allow sufficient intramolecular motion for photothermal conversion. Due to these unique features, in vitro and in vivo evaluations demonstrate that the TPA-BTZ@PEG2000 NPs exhibited long-term NIR-imaging ability, superior tumoricidal activity, and suppressed tumor growth. This research provides new insights for developing new AIEgens for NIR imaging-guided multimodal phototherapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Humanos , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fototerapia/métodos , Terapia Fototérmica
3.
Acta Biomater ; 149: 16-29, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817339

RESUMO

Photothermal therapy (PTT) has attracted great attention due to its noninvasive and low side effects. Photothermal agents (PTAs) which could convert absorbing light into heat play a critical role in PTT. For conventional small organic PTAs, the photothermal conversion ability is mainly achieved by intermolecular noncovalent interactions such as π-π interactions. However, in terms of organic fluorophores with rotator or vibrator segments, the balance between fluorescence emission and heat generation is mainly regulated by intramolecular motions which could be mediated by molecular engineering. Following this designing principle, various fluorophores with intramolecular motions for effective PTT have been reported. In this review, we highlight the recent progress of PTAs based on small organic fluorophores with intramolecular motions for enhanced PTT. Designing tactics of these fluorophores to afford long-wavelength absorption, high photothermal conversion ability, and effective accumulation capability are emphasized. Finally, one-for-all phototheranostics achieved by mediating intramolecular motions of these fluorophores are highlighted. We hope this review could pave a new avenue to developing fluorophores with intramolecular motion as PTAs to advance their clinical transition. STATEMENT OF SIGNIFICANCE: Recent progress of photothermal agents (PTAs) based on small organic fluorophores with intramolecular motion is summarized in this review. Molecular engineering of these small organic fluorophores to afford long-wavelength absorption, high photothermal conversion ability, and effective accumulation at tumor sites for enhanced photothermal therapy (PTT) is highlighted. Strategies to tune the intramolecular motions of these fluorophores to achieve multimodal phototherapy are emphasized as well.


Assuntos
Hipertermia Induzida , Neoplasias , Fluorescência , Humanos , Neoplasias/terapia , Fototerapia
4.
J Ethnopharmacol ; 279: 114371, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34181957

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Diterpene Ginkgolides Meglumine Injection (DGMI) is made of extracts from Ginkgo biloba L, including Ginkgolides A, B, and K and some other contents, and has been widely used as the treatment of cerebral ischemic stroke in clinic. It can be learned from the "Compendium of Materia Medica" that Ginkgo possesses the effect of "dispersing toxin". The ancient Chinese phrase "dispersing toxin" is now explained as elimination of inflammation and oxidative state in human body. And it led to the original ideas for today's anti-oxidation studies of Ginkgo in apoptosis induced by optic nerve crush injury. AIM OF THE STUDY: To investigate the underlying molecular mechanism of the DGMI in retinal ganglion cells (RGCs) apoptosis. MATERIALS AND METHODS: TUNEL staining was used to observe the anti-apoptotic effects of DGMI on the adult rat optic nerve injury (ONC) model, and flow cytometry and hoechst 33,342 staining were used to observe the anti-apoptotic effects of DGMI on the oxygen glucose deprivation (OGD) induced RGC-5 cells injury model. The regulation of apoptosis and MAPKs pathways were investigated with Immunohistochemistry and Western blotting. RESULTS: This study demonstrated that DGMI is able to decrease the conduction time of F-VEP and ameliorate histological features induced by optic nerve crush injury in rats. Immunohistochemistry and TUNEL staining results indicated that DGMI can also inhibit cell apoptosis via modulating MAPKs signaling pathways. In addition, treatment with DGMI markedly improved the morphological structures and decreased the apoptotic index in RGC-5 cells. Mechanistically, DGMI could significantly inhibit cell apoptosis by inhibiting p38, JNK and Erk1/2 activation. CONCLUSION: The study shows that DGMI and ginkgolides inhibit RGCs apoptosis by impeding the activation of MAPKs signaling pathways in vivo and in vitro. Therefore, the present study provided scientific evidence for the underlying mechanism of DGMI and ginkgolides on optic nerve crush injury.


Assuntos
Apoptose/efeitos dos fármacos , Lesões por Esmagamento/tratamento farmacológico , Ginkgolídeos/farmacologia , Traumatismos do Nervo Óptico/tratamento farmacológico , Animais , Linhagem Celular , Lesões por Esmagamento/patologia , Modelos Animais de Doenças , Ginkgo biloba/química , Ginkgolídeos/administração & dosagem , Ginkgolídeos/química , Marcação In Situ das Extremidades Cortadas , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Meglumina/administração & dosagem , Traumatismos do Nervo Óptico/patologia , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia
5.
Front Pharmacol ; 10: 381, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031629

RESUMO

The YiQiFuMai powder injection (YQFM), a traditional Chinese medicine (TCM) prescription re-developed based on Sheng-Mai-San, is widely applied for the treatment of cardiovascular diseases. However, its potential molecular mechanism remains obscure. The present study was designed to observe the effects of YQFM and underlying mechanisms on coronary artery ligation (CAL)-induced heart failure (HF) and cell hypoxia of 24 h oxygen-glucose deprivation (OGD) in neonatal rat ventricular myocytes (NRVMs). HF was induced by permanent CAL for 2 weeks in ICR mice. The results demonstrated that YQFM significantly attenuated CAL-induced HF via improving the cardiac function, cardiac systolic function, cardiac structure impairment, cardiac histological features and fibrosis. YQFM markedly attenuated mitochondrial dysfunction through improving mitochondrial morphology, increasing mitochondria membrane potential (Δψm), mitochondrial ROS generation and expression of Mitofusin-2 (Mfn2), meanwhile, decreasing phosphorylation of dynamin-related protein 1 (p-Drp1). Mechanistically, YQFM could significantly decrease the expression of isoforms of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit NADPH oxidase 2 (NOX2), p67phox and NADPH oxidase 4 (NOX4), ultimately reducing reactive oxygen species (ROS) generation. In addition, YQFM could down-regulate expression of calcium voltage-gated channel subunit α1C (CACNA1C) and phosphorylation of calmodulin dependent protein kinase II (p-CaMKII). These results suggest that YQFM ameliorates mitochondrial function in HF mice, partially through inhibiting ROS generation and CaMKII signaling pathways. Therefore, the present study provided scientific evidence for the underlying mechanism of YQFM.

6.
Cell Physiol Biochem ; 45(4): 1455-1471, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29466787

RESUMO

BACKGROUND/AIMS: Traditional Chinese medicine (TCM) has been used in clinical practice for thousands of years and has accumulated considerable knowledge concerning the in vivo efficacy of targeting complicated diseases. TCM formulae are a mixture of hundreds of chemical components with multiple potential targets, essentially acting as a combination therapy of multi-component drugs. However, the obscure substances and the unclear molecular mechanisms are obstacles to their further development and internationalization. Therefore, it is necessary to develop new modern drugs based on the combination of effective components in TCM with exact clinical efficacy. In present study, we aimed to detect optimal ratio of the combination of effective components based on Sheng-Mai-San for myocardial ischemia. METHODS: On the basis of preliminary studies and references of relevant literature about Sheng-Mai-San for myocardial ischemia, we chose three representative components (ginsenoside Rb1 (G), ruscogenin (R) and schisandrin (S)) for the optimization design studies. First, the proper proportion of the combination was explored in different myocardial ischemia mice induced by isoproterenol and pituitrin based on orthogonal design. Then, the different proportion combinations were further optimized through uniform design in a multi-model and multi-index mode. Finally, the protective effect of combination was verified in three models of myocardial ischemia injured by ischemia/reperfusion, chronic intermittent hypoxia and acute infarction. RESULTS: The optimized combination GRS (G: 6 mg/kg, R: 0.75 mg/kg, S: 6 mg/kg) obtained by experimental screening exhibited a significant protective effect on myocardial ischemia injury, as evidenced by decreased myocardium infarct size, ameliorated histological features, decreased myocardial myeloperoxidase (MPO) and malondiadehyde (MDA), calcium overload, and decreased serum lactate dehydrogenase (LDH), creatine kinase MB isoenzyme (CK-MB), cardiac troponin I (cTn-I) activity. In addition, the interactions of three components in combination GRS were also investigated. The combination, compared to G, R and S, could significantly reduce the concentration of serum CK-MB and cTn-I, and decrease myocardial infarct size, which demonstrated the advantages of this combination for myocardial ischemia. CONCLUSION: Our results demonstrated that the optimized combination GRS could exert significant cardioprotection against myocardial ischemia injury with similar effect compared to Sheng Mai preparations, which might provide some pharmacological evidences for further development of new modern Chinese drug for cardiovascular diseases basing on traditional Chinese formula with affirmative therapeutic effect.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Isquemia Miocárdica/tratamento farmacológico , Animais , Creatina Quinase Forma MB/sangue , Ciclo-Octanos/uso terapêutico , Modelos Animais de Doenças , Combinação de Medicamentos , Ginsenosídeos/uso terapêutico , Coração/efeitos dos fármacos , Isoproterenol/toxicidade , L-Lactato Desidrogenase/sangue , Lignanas/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Infarto do Miocárdio/patologia , Isquemia Miocárdica/induzido quimicamente , Isquemia Miocárdica/mortalidade , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Hormônios Neuro-Hipofisários/toxicidade , Compostos Policíclicos/uso terapêutico , Espirostanos/uso terapêutico , Troponina I/sangue
7.
Front Pharmacol ; 8: 21, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197101

RESUMO

GRS is a drug combination of three components including ginsenoside Rb1, ruscogenin and schisandrin. It derived from the well-known TCM formula Sheng MaiSan, a widely used traditional Chinese medicine for the treatment of cardiovascular diseases in clinic. The present study illuminates its underlying mechanisms against myocardial ischemic diseases based on the combined methods of bioinformatic prediction and experimental verification. A protein database was established through constructing the drug-protein network. And the target-pathway interaction network clustered the potential signaling pathways and targets of GRS in treatment of myocardial ischemic diseases. Several target proteins, such as NFKB1, STAT3 and MAPK14, were identified as the candidate key proteins, and MAPKs and JAK-STAT signaling pathway were suggested as the most related pathways, which were in accordance with the gene ontology analysis. Then, the predictive results were further validated and we found that GRS treatment alleviated hypoxia/reoxygenation (H/R)-induced cardiomyocytes injury via suppression of MDA levels and ROS generation, and potential mechanisms might related to the suppression of activation of MAPKs and JAK2-STAT3 signaling pathways. Conclusively, our results offer the evidence that GRS attenuates myocardial ischemia injury via regulating oxidative stress and MAPKs and JAK2-STAT3 signaling pathways, which supplied some new insights for its prevention and treatment of myocardial ischemia diseases.

8.
Neurochem Int ; 103: 45-56, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28049027

RESUMO

Identification and validation of disease-relevant target proteins for natural products is an essential component of modern pharmaceutical research. In the present study, an integrated shotgun proteomics and bioinformatics approach was established to profile the interaction of active small molecules derived from ShengMai preparations (SMXZF) with hundreds of endogenously expressed proteins from middle cerebral artery occlusion (MCAO) model. Affinity-based proteomic strategies for isolation and identification of targets for the bioactive components is a classic, but still powerful approach. The proteins bound by SMXZF of the brain tissue proteins from MCAO model via serial affinity chromatograph were analyzed by nano liquid chromatography tandem mass spectrometry (nanoLC-MS/MS) and all MS/MS spectra were then automatically searched by the SEQUEST program. A total of 154 proteins had been identified, with the molecular weight ranging from 21,369.6 to 332,393.21 and the pI from 4.32 to 10.88. Bioinformatic analysis was also implemented to better understand the identified proteins. In the gene ontology (GO) annotation, all the identified proteins were classified into 39, 18 and 12 groups according to biological process, cellular component and molecular function, respectively. KEGG pathways analysis of the identified proteins was conducted with 46 corresponding pathways found. In addition, the gene network was also constructed to analyze the relationship of these genes each other. Further validation of some targets were performed in MCAO model by Western blotting. The results indeed supported the notion that proteins MAPK/ERK1/2, CaMKII and VIM were involved in the disease development of MCAO and played an essential role in the protective effect of SMXZF. This study highlights the effectiveness and reliability of this integrated shotgun proteomics and bioinformatics approach, which is a promising paradigm for target identification and elucidating the mechanism of natural products in future research.


Assuntos
Encéfalo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Proteômica , Animais , Encéfalo/metabolismo , Cromatografia Líquida/métodos , Biologia Computacional/métodos , Combinação de Medicamentos , Infarto da Artéria Cerebral Média/metabolismo , Ligantes , Masculino , Camundongos , Anotação de Sequência Molecular/métodos , Proteômica/métodos , Reprodutibilidade dos Testes
9.
Sci Rep ; 6: 37114, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27869201

RESUMO

GRS is a drug combination of three active components including ginsenoside Rb1, ruscogenin and schisandrin. It derived from the well-known TCM formula ShengMai preparations, a widely used traditional Chinese medicine for the treatment of cardiovascular diseases in clinic. The present study explores the cardioprotective effects of GRS on myocardial ischemia/reperfusion (MI/R) injury compared with ShengMai preparations and investigates the underlying mechanisms. GRS treatment significantly attenuated MI/R injury and exhibited similar efficacy as Shengmai preparations, as evidenced by decreased myocardium infarct size, ameliorated histological features, the decrease of LDH production and improved cardiac function, and also produced a significant decrease of apoptotic index. Mechanistically, GRS alleviated myocardial apoptosis by inhibiting the mitochondrial mediated apoptosis pathway as reflected by inhibition of caspase-3 activity, normalization of Bcl-2/Bax levels and improved mitochondrial function. Moreover, GRS prevented cardiomyocytes mitochondrial fission and upregulated AMPKα phosphorylation. Interestingly, AMPK activation prevented hypoxia and reoxygenation induced mitochondrial fission in cardiomyocytes and GRS actions were significantly attenuated by knockdown of AMPKα. Collectively, these data show that GRS is effective in mitigating MI/R injury by suppressing mitochondrial mediated apoptosis and modulating AMPK activation-mediated mitochondrial fission, thereby providing a rationale for future clinical applications and potential therapeutic strategy for MI/R injury.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cardiotônicos/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Apoptose/efeitos dos fármacos , Ciclo-Octanos/administração & dosagem , Combinação de Medicamentos , Quimioterapia Combinada , Dinaminas/metabolismo , Ginsenosídeos/administração & dosagem , Lignanas/administração & dosagem , Masculino , Camundongos Endogâmicos ICR , Dinâmica Mitocondrial/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/patologia , Compostos Policíclicos/administração & dosagem , Espirostanos/administração & dosagem
10.
Rejuvenation Res ; 19(6): 495-508, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27072567

RESUMO

The YiQiFuMai powder injection (YQFM), a traditional Chinese medicine (TCM) prescription re-developed based on the well-known TCM formula Sheng-maisan, showed a wide range of pharmacological activities in cardiovascular diseases in clinics. However, its role in protection against myocardial ischemia/reperfusion (MI/R) injury has not been elucidated. The present study not only evaluated the cardioprotective effect of YQFM from MI/R injury but also investigated the potential molecular mechanisms both in vivo and in vitro. The myocardium infarct size, production of lactate dehydrogenase (LDH), creatine kinase (CK), cardiac function, TUNEL staining, and caspase-3 activity were measured. Cell viability was determined, and cell apoptosis was measured by Hoechst 33342 staining and flow cytometry. Mitochondrial membrane potential (ΔΨm) was measured, and ATP content was quantified by bioluminescent assay. Expression of apoptosis-related proteins, including Caspase-3, Bcl-2, Bax, AMPKα, and phospho-AMPKα, was analyzed by western blotting. AMPKα siRNA transfection was also applied to the mechanism elucidation. YQFM at a concentration of 1.06 g/kg significantly reduced myocardium infarct size and the production of LDH, CK in serum, improved the cardiac function, and also produced a significant decrease of apoptotic index. Further, combined treatment with compound C partly attenuated the anti-apoptotic effect of YQFM. In addition, pretreatment with YQFM ranging from 25 to 400 µg/mL markedly improved cell viability and decreased LDH release. Moreover, YQFM inhibited H9c2 apoptosis, blocked the expression of caspase-3, and modulated Bcl-2 and Bax proteins, leading to an increased mitochondrial membrane potential and cellular ATP content. Mechanistically, YQFM activated AMP-activated protein kinase (AMPK) signaling pathways whereas pretreatment with AMPK inhibitor Compound C and application of transfection with AMPKα siRNA attenuated the anti-apoptotic effect of YQFM. Our results indicated that YQFM could provide significant cardioprotection against MI/R injury, and potential mechanisms might suppress cardiomyocytes apoptosis, at least in part, through activating the AMPK signaling pathways.


Assuntos
Adenilato Quinase/fisiologia , Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miocárdio/patologia , Animais , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Injeções , Camundongos , Camundongos Endogâmicos ICR , Traumatismo por Reperfusão Miocárdica/patologia , Pós , Proteínas Proto-Oncogênicas c-bcl-2/análise , Proteína X Associada a bcl-2/análise
11.
Plant Physiol ; 136(4): 3979-89, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15557101

RESUMO

It is well known that a tip-focused intracellular Ca2+ gradient and the meshwork of short actin filaments at the tip region are necessary for pollen tube growth. However, little is known about the connections between the two factors. Here, a novel Ca2+-dependent actin-binding protein with molecular mass of 41 kD from lily (Lilium davidii) pollen (LdABP41) was isolated and purified with DNase I chromatography. Our purification procedure yielded about 0.6 mg of LdABP41 with >98% purity from 10 g of lily pollen. At least two isoforms with isoelectric points of 5.8 and 6.0 were detected on two-dimensional gels. The results of N-terminal sequencing and mass-spectrometry analysis of LdABP41 showed that both isoforms shared substantial similarity with trumpet lily (Lilium longiflorum) villin and other members of the gelsolin superfamily. Negative-stained electron microscope images showed that LdABP41 severed in vitro-polymerized lily pollen F-actin into short actin filaments in a Ca2+-sensitive manner. Microinjection of the anti-LdABP41 antibody into germinated lily pollen demonstrated that the protein was required for pollen tube growth. The results of immunolocalization of the protein showed that it existed in the cytoplasm of the pollen tube, especially focused in the tip region. Our results suggest that LdABP41 belongs to the gelsolin superfamily and may play an important role in controlling actin organization in the pollen tube tip by responding to the oscillatory, tip-focused Ca2+ gradient.


Assuntos
Actinas/metabolismo , Cálcio/metabolismo , Lilium/metabolismo , Proteínas dos Microfilamentos/química , Proteínas de Plantas/química , Pólen/química , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Sequência de Aminoácidos , Flores/química , Flores/metabolismo , Lilium/citologia , Proteínas dos Microfilamentos/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA