Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 631-638, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646750

RESUMO

Litter input triggers the secretion of soil extracellular enzymes and facilitates the release of carbon (C), nitrogen (N), and phosphorus (P) from decomposing litter. However, how soil extracellular enzyme activities were controlled by litter input with various substrates is not fully understood. We examined the activities and stoichiometry of five enzymes including ß-1,4-glucosidase, ß-D-cellobiosidase, ß-1,4-N-acetyl-glucosaminidase, leucine aminopeptidase and acidic phosphatase (AP) with and without litter input in 10-year-old Castanopsis carlesii and Cunninghamia lanceolata plantations monthly during April to August, in October, and in December 2021 by using an in situ microcosm experiment. The results showed that: 1) There was no significant effect of short-term litter input on soil enzyme activity, stoichiometry, and vector properties in C. carlesii plantation. In contrast, short-term litter input significantly increased the AP activity by 1.7% in May and decreased the enzymatic C/N ratio by 3.8% in August, and decreased enzymatic C/P and N/P ratios by 11.7% and 10.3%, respectively, in October in C. lanceolata plantation. Meanwhile, litter input increased the soil enzymatic vector angle to 53.8° in October in C. lanceolata plantations, suggesting a significant P limitation for soil microorganisms. 2) Results from partial least squares regression analyses showed that soil dissolved organic matter and microbial biomass C and N were the primary factors in explaining the responses of soil enzymatic activity to short-term litter input in both plantations. Overall, input of low-quality (high C/N) litter stimulates the secretion of soil extracellular enzymes and accelerates litter decomposition. There is a P limitation for soil microorganisms in the study area.


Assuntos
Carbono , Cunninghamia , Fagaceae , Nitrogênio , Fósforo , Microbiologia do Solo , Solo , Solo/química , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/metabolismo , Carbono/metabolismo , Carbono/análise , Nitrogênio/metabolismo , Nitrogênio/análise , Fósforo/metabolismo , Fósforo/análise , Fagaceae/crescimento & desenvolvimento , Fagaceae/metabolismo , Leucil Aminopeptidase/metabolismo , Celulose 1,4-beta-Celobiosidase/metabolismo , Ecossistema , Folhas de Planta/metabolismo , Folhas de Planta/química , Acetilglucosaminidase/metabolismo , Fosfatase Ácida/metabolismo , beta-Glucosidase/metabolismo , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA