Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 12: 713799, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539643

RESUMO

Rheumatoid arthritis (RA) is significantly associated with glycolysis. This study used 2-deoxy-D-glucose (2-DG), an inhibitor of glycolysis, to treat rats with collagen-induced arthritis (CIA) and investigate the metabolic regulatory mechanism of glycolysis in the disease. 2-DG significantly alleviated CIA. Metabolomics and transcriptomics, as well as their integrative analysis, detected significant changes in the pathways of bile secretion, cholesterol and linoleic acid metabolism in the plasma, liver and spleen during the CIA process and the opposite changes following 2-DG treatment, whereas the expression of the genes regulating these metabolic pathways were changed only in the spleen. In the rat liver, levels of (S)-5-diphosphomevalonic acid in the terpenoid backbone biosynthesis pathway were significantly decreased during CIA progression and increased following 2-DG treatment, and levels of taurochenodeoxycholic acid in the pentose and glucuronate interconversions pathway showed the opposite results. In the spleen, levels of 3-methoxy-4-hydroxyphenylglycol glucuronide in bile secretion and 12(S)-leukotriene B4 in arachidonic acid metabolism were significantly decreased during CIA progression and increased following 2-DG treatment. The changes in the gene-metabolite network of bile secretion in the spleen correlated with a decreased plasma L-acetylcarnitine level in CIA rats and an increase following 2-DG treatment. Our analysis suggests the involvement of spleen and liver metabolism in CIA under the control of glycolysis.


Assuntos
Artrite Experimental/etiologia , Artrite Experimental/metabolismo , Metabolismo Energético , Glucose/metabolismo , Fígado/imunologia , Fígado/metabolismo , Baço/imunologia , Baço/metabolismo , Animais , Artrite Experimental/patologia , Biologia Computacional/métodos , Citocinas/metabolismo , Perfilação da Expressão Gênica , Glicólise , Fígado/patologia , Contagem de Linfócitos , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Subpopulações de Linfócitos/patologia , Metabolômica/métodos , Ratos , Baço/patologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-33833821

RESUMO

BACKGROUND: Rho guanine nucleotide exchange factor 10-like protein (ARHGEF10L) is a member of the guanine nucleotide exchange factor family, which regulates Rho GTPase activities, thus contributing to tumorigenesis. Our previous study demonstrated a strong association between the ARHGEF10L gene and the risk of cervical carcinoma. This study investigated the pathogenic role and mechanism of ARHGEF10L in cervical tumors. METHODS: The HeLa cell line, which was derived from cervical carcinoma, was transfected with ARHGEF10L-overexpressing plasmids or anti-ARHGEF10L siRNA. Cell counting kit-8 assays, wound-healing assays, and cell apoptosis assays were performed to investigate the effects of ARHGEF10L on cell activities. A Rho pull-down assay and RNA-sequencing analysis were performed to investigate the pathogenic pathway of ARHGEF10L involvement in cervical tumors. RESULTS: ARHGEF10L overexpression promoted cell proliferation and migration, reduced cell apoptosis, and induced epithelial-to-mesenchymal transition (EMT) via downregulation of E-cadherin and upregulation of N-cadherin and Slug in transfected HeLa cells. The overexpression of ARHGEF10L also upregulated GTP-RhoA, ROCK1, and phospho-ezrin/radixin/moesin (ERM) expression in HeLa cells. RNA-sequencing analysis detected altered transcription of 31 genes in HeLa cells with ARHGEF10L overexpression. Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) pathway analyses identified significant differences in cyclin-dependent protein serine/threonine kinase activity, cell responses to vitamin A, and Toll-like receptor signaling pathways. Both real-time PCR and Western blotting verified the increased expression of heat shock 70 kDa protein 6 (HSPA6) in ARHGEF10L-overexpressing HeLa cells. Since we reported that ARHGEF10L played a role through RhoA-ROCK1-ERM signaling, an important pathway in tumorigenesis, and stimulated EMT and HSPA6 expression in liver tumors and gastric tumor cells, we suggest that ARHGEF10L is a novel oncogene in many tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA