Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 16(12): 20805-20819, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36378717

RESUMO

The emergence of X-ray-induced photodynamic therapy (X-PDT) holds tremendous promise for clinical deep-penetrating cancer therapy. However, the clinical application of X-PDT in cancer treatment is still limited due to the hypoxic property of cancerous tissue, the inherent antioxidant system of tumor cells, and the difficulty in matching the absorption spectra of photosensitizers. Herein, a versatile core-shell radiosensitizer (SCNPs@DMSN@CeOx-PEG, denoted as SSCP) was elaborately designed and constructed to enhance X-PDT by coating tunable mesoporous silica on nanoscintillators, followed by embedding the cerium oxide nanoparticles in situ. The obtained SSCP radiosensitizer demonstrated a distinct blue-shift in the ultraviolet light region, so that it could perfectly absorb the ultraviolet light converted by the SCNPs core, resulting in the formation of photoinduced electron-hole (e--h+) pairs separation to generate reactive oxygen species (ROS). In addition, the cerium oxide exhibits high glutathione consumption to heighten ROS accumulation, and catalase-like activity to alleviate the hypoxia, which further enhances the efficiency of radiotherapy. Benefiting from the abundant Lu and Ce elements, the computed tomography imaging performance of SSCP is about 3.79-fold that of the clinical contrast agent (iohexol), which has great potential in both preclinical imaging and clinical translation.


Assuntos
Cério , Nanopartículas , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Raios X , Espécies Reativas de Oxigênio , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA