Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microcirculation ; 26(7): e12553, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31059171

RESUMO

OBJECTIVE: Yiqifumai injection is a compound Chinese medicine used to treat microcirculatory disturbance-related diseases clinically. Our previous study proved that Yiqifumai injection pretreatment inhibited lipopolysaccharide-induced venular albumin leakage in rat mesentery. This study aimed to investigate whether Yiqifumai injection attenuated cerebral microvascular hyperpermeability and corresponding contribution of its main ingredients. METHODS: Rats were challenged by lipopolysaccharide infusion (5 mg/kg/h) for 90 minutes. Yiqifumai injection (160 mg/kg/h), Rb1 (5 mg/kg/h), Sch (2.5 mg/kg/h), and Rb1 (5 mg/kg/h) + Sch (2.5 mg/kg/h) were infused 30 minutes before (pretreatment) or after (post-treatment) lipopolysaccharide administration. RESULTS: Both pretreatment and post-treatment with Yiqifumai injection attenuated cerebral venular albumin leakage during lipopolysaccharide infusion and cerebrovascular hyperpermeability at 72 hours after lipopolysaccharide infusion. Yiqifumai injection restrained the decreased junction protein expression, adenosine triphosphate content, and mitochondria complex I, II, IV, and V activities. Moreover, Yiqifumai injection inhibited toll-like receptor-4 expression, Src phosphorylation, and caveolin-1 expression. Its main ingredients Rb1 and Sch alone worked differently, with Rb1 being more effective for enhancing energy metabolism, while Sch attenuating toll-like receptor-4 expression and Src activation. CONCLUSION: Yiqifumai injection exerts a protective and ameliorated effect on cerebral microvascular hyperpermeability, which is more effective than any of its ingredients, possibly due to the interaction of its main ingredients through a multi-pathway mode.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Lipopolissacarídeos/toxicidade , Microcirculação/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Wistar
2.
Zhonghua Bing Li Xue Za Zhi ; 34(5): 288-92, 2005 May.
Artigo em Chinês | MEDLINE | ID: mdl-16181551

RESUMO

OBJECTIVE: To investigate the effects of protein tyrosine phosphatase-SHP2 and dual-specificity MAPK phosphatase-MKP5 on the activation of MAPKs and cell invasion induced by P2Y purinergic receptor in human prostate cancer cell lines with different metastatic potentials. METHODS: The wide type (-wt) SHP2, mutant type (-cs) SHP2 and wide type (-wt) MKP5 cDNA expression vectors were constructed and stably transfected into 1E8 cells (highly metastatic) and/or 2B4 cells (non-metastatic). The tyrosine phosphorylation of SHP2 was examined by immunoprecipitation. The activation of ERK1/2 and p38 induced by P2Y receptor agonist ATP was analyzed by Western blot with phospho-specific antibodies against the dually phosphorylated, active forms of ERK1/2 and p38. The in-vitro invasive ability through Matrigel was measured by boyden-chamber assay. RESULTS: ATP induced significant SHP2 phosphorylation, which was stronger and lasted longer in 1E8 than in 2B4. SHP2-wt enhanced the ERK1/2 activation induced by ATP in 2B4 cells, while SHP2-cs delayed and decreased this effect in 1E8 cells. Both SHP2-wt and SHP2-cs had no obvious influence on p38 activation. ATP stimulated cell invasion of both 1E8 and 2B4, while transfection of SHP2-wt into 2B4 cells further increased the invasive-stimulating ability of ATP (18.7% increase compared with ATP treatment alone). Transfection of SHP2-cs into 1E8 cells, however, antagonized the invasive-stimulating ability of ATP (40.9% decrease compared with ATP treated group). Up-regulation of MKP5-wt inhibited phosphorylation of p38 by ATP and reduced cell invasion stimulated by ATP (22.4% and 28.7% decrease compared with ATP treated group of 1E8 and 2B4, respectively). CONCLUSIONS: Both SHP2 and MKP5 play some roles in P2Y receptor-mediated activation of MEK/ERK, p38 signaling pathways and prostate cancer invasion. SHP2 positively regulates ERK activation and prostate cancer invasion, whereas MKP5 inhibits the invasion by suppressing p38 activation.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias da Próstata/patologia , Proteínas Tirosina Fosfatases/metabolismo , Receptores Purinérgicos P2/fisiologia , Trifosfato de Adenosina/farmacologia , Linhagem Celular Tumoral , DNA Complementar/genética , Fosfatases de Especificidade Dupla , Vetores Genéticos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno , Invasividade Neoplásica , Fosforilação , Neoplasias da Próstata/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Tirosina Fosfatases/genética , Transdução de Sinais , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA