Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhen Ci Yan Jiu ; 49(4): 331-340, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38649200

RESUMO

OBJECTIVES: To observe whether acupuncture up-regulates chemokine CXC ligand 1 (CXCL1) in the brain to play an analgesic role through CXCL1/chemokine CXC receptor 2 (CXCR2) signaling in adjuvant induced arthritis (AIA) rats, so as to reveal its neuro-immunological mechanism underlying improvement of AIA. METHODS: BALB/c mice with relatively stable thermal pain reaction were subjected to planta injection of complete Freund adjuvant (CFA) for establishing AIA model, followed by dividing the AIA mice into simple AF750 (fluorochrome) and AF750+CXCL1 groups (n=2 in each group). AF750 labeled CXCL1 recombinant protein was then injected into the mouse's tail vein to induce elevation of CXCL1 level in blood for simulating the effect of acupuncture stimulation which has been demonstrated by our past study. In vivo small animal imaging technology was used to observe the AF750 and AF750+CXCL1-labelled target regions. After thermal pain screening, the Wistar rats with stable pain reaction were subjected to AIA modeling by injecting CFA into the rat's right planta, then were randomized into model and manual acupuncture groups (n=12 in each group). Other 12 rats that received planta injection of saline were used as the control group. Manual acupuncture (uniform reinforcing and reducing manipulations) was applied to bilateral "Zusanli" (ST36) for 4×2 min, with an interval of 5 min between every 2 min, once daily for 7 days. The thermal pain threshold was assessed by detecting the paw withdrawal latency (PWL) using a thermal pain detector. The contents of CXCL1 in the primary somatosensory cortex (S1), medial prefrontal cortex, nucleus accumbens, amygdala, periaqueductal gray and rostroventromedial medulla regions were assayed by using ELISA, and the expression levels of CXCL1, CXCR2 and mu-opioid receptor (MOR) mRNA in the S1 region were detected using real time-quantitative polymerase chain reaction. The immune-fluorescence positive cellular rate of CXCL1 and CXCR2 in S1 region was observed after immunofluorescence stain. The immunofluorescence double-stain of CXCR2 and astrocyte marker glial fibrillary acidic protein (GFAP) or neuron marker NeuN or MOR was used to determine whether there is a co-expression between them. RESULTS: In AIA mice, results of in vivo experiments showed no obvious enrichment signal of AF750 or AF750+CXCL1 in any organ of the body, while in vitro experiments showed that there was a stronger fluorescence signal of CXCL1 recombinant protein in the brain. In rats, compared with the control group, the PWL from day 0 to day 7 was significantly decreased (P<0.01) and the expression of CXCR2 mRNA in the S1 region significantly increased in the model group (P<0.05), while in comparison with the model group, the PWL from day 2 to day 7, CXCL1 content, CXCR2 mRNA expression and CXCR2 content, and MOR mRNA expression in the S1 region were significantly increased in the manual acupuncture group (P<0.05, P<0.01). Immunofluorescence stain showed that CXCR2 co-stained with NeuN and MOR in the S1 region, indicating that CXCR2 exists in neurons and MOR-positive neurons but not in GFAP positive astrocytes. CONCLUSIONS: Acupuncture can increase the content of CXCL1 in S1 region, up-regulate CXCR2 on neurons in the S1 region and improve MOR expression in S1 region of AIA rats, which may contribute to its effect in alleviating inflammatory pain.


Assuntos
Terapia por Acupuntura , Artrite Experimental , Quimiocina CXCL1 , Receptores de Interleucina-8B , Córtex Somatossensorial , Animais , Humanos , Masculino , Camundongos , Ratos , Pontos de Acupuntura , Artrite Experimental/terapia , Artrite Experimental/metabolismo , Artrite Experimental/genética , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Inflamação/terapia , Inflamação/metabolismo , Inflamação/genética , Camundongos Endogâmicos BALB C , Dor/metabolismo , Dor/genética , Manejo da Dor , Ratos Wistar , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Transdução de Sinais , Córtex Somatossensorial/metabolismo
2.
J Inflamm Res ; 17: 1823-1837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523680

RESUMO

Purpose: Acupuncture (ACU) has been demonstrated to alleviate inflammatory pain. Mechanoreceptors are present in acupuncture points. When acupuncture exerts mechanical force, these ion channels open and convert the mechanical signals into biochemical signals. TRPA1 (T ransient receptor potential ankyrin 1) is capable of sensing various physical and chemical stimuli and serves as a sensor for inflammation and pain. This protein is expressed in immune cells and contributes to local defense mechanisms during early tissue damage and inflammation. In this study, we investigated the role of TRPA1 in acupuncture analgesia. Patients and Methods: We injected complete Freund's adjuvant (CFA) into the mouse plantars to establish a hyperalgesia model. Immunohistochemistry and immunofluorescence analyses were performed to determine the effect of acupuncture on the TRPA1 expression in the Zusanli (ST36). We used TRPA1-/- mouse and pharmacological methods to antagonize TRPA1 to observe the effect on acupuncture analgesia. On this basis, collagenase was used to destroy collagen fibers at ST36 to observe the effect on TRPA1. Results: We found that the ACU group vs the CFA group, the number of TRPA1-positive mast cells, macrophages, and fibroblasts at the ST36 increased significantly. In CFA- inflammatory pain models, the TRPA1-/- ACU vs TRPA1+/+ ACU groups, the paw withdrawal latency (PWL) and paw withdrawal threshold (PWT) downregulated significantly. In the ACU + high-, ACU + medium-, ACU + low-dose HC-030031 vs ACU groups, the PWL and PWT were downregulated, and in carrageenan-induced inflammatory pain models were consistent with these results. We further found the ACU + collagenase vs ACU groups, the numbers of TRPA1-positive mast cells, macrophages, and fibroblasts at the ST36 were downregulated. Conclusion: These findings together imply that TRPA1 plays a significant role in the analgesic effects produced via acupuncture at the ST36. This provides new evidence for acupuncture treatment of painful diseases.

3.
Purinergic Signal ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305986

RESUMO

Acupuncture is a traditional medicinal practice in China that has been increasingly recognized in other countries in recent decades. Notably, several reports have demonstrated that acupuncture can effectively aid in pain management. However, the analgesic mechanisms through which acupuncture provides such benefits remain poorly understood. Purinergic signaling, which is mediated by purine nucleotides and purinergic receptors, has been proposed to play a central role in acupuncture analgesia. On the one hand, acupuncture affects the transmission of nociception by increasing adenosine triphosphate dephosphorylation and thereby decreasing downstream P2X3, P2X4, and P2X7 receptors signaling activity, regulating the levels of inflammatory factors, neurotrophic factors, and synapsin I. On the other hand, acupuncture exerts analgesic effects by promoting the production of adenosine, enhancing the expression of downstream adenosine A1 and A2A receptors, and regulating downstream inflammatory factors or synaptic plasticity. Together, this systematic overview of the field provides a sound, evidence-based foundation for future research focused on the application of acupuncture as a means of relieving pain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA