Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Saudi Pharm J ; 32(5): 102023, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38550333

RESUMO

The escalation of many coronavirus variants accompanied by the lack of an effective cure has motivated the hunt for effective antiviral medicines. In this regard, 18 Saudi Arabian medicinal plants were evaluated for SARS CoV-2 main protease (Mpro) inhibition activity. Among them, Terminalia brownii and Acacia asak alcoholic extracts exhibited significant Mpro inhibition, with inhibition rates of 95.3 % and 95.2 %, respectively, at a concentration of 100 µg/mL. Bioassay-guided phytochemical study for the most active n-butanol fraction of T. brownii led to identification of eleven compounds, including two phenolic acids (1, and 2), seven hydrolysable tannins (3-10), and one flavonoid (11) as well as four flavonoids from A. asak (12-15). The structures of the isolated compounds were established using various spectroscopic techniques and comparison with known compounds. To investigate the chemical interactions between the identified compounds and the target Mpro protein, molecular docking was performed using AutoDock 4.2. The findings identified compounds 4, 5, 10, and 14 as the most potential inhibitors of Mpro with binding energies of -9.3, -8.5, -8.1, and -7.8 kcal mol-1, respectively. In order to assess the stability of the protein-ligand complexes, molecular dynamics simulations were conducted for a duration of 100 ns, and various parameters such as RMSD, RMSF, Rg, and SASA were evaluated. All selected compounds 4, 5, 10, and 14 showed considerable Mpro inhibiting activity in vitro, with compound 4 being the most powerful with an IC50 value of 1.2 µg/mL. MM-GBSA free energy calculations also revealed compound 4 as the most powerful Mpro inhibitor. None of the compounds (4, 5, 10, and 14) display any significant cytotoxic activity against A549 and HUVEC cell lines.

2.
Saudi Pharm J ; 31(12): 101850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37965491

RESUMO

Peptic ulcer disease is the greatest digestive disorder that has increased incidence and recurrence rates across all nations. Prangos pabularia (L.) has been well documented as a folkloric medicinal herb utilized for multiple disease conditions including gastric ulcers. Hence, the target study was investigation the gastro-protection effects of root extracts of Prangos pabularia (REPP) on ethanol-mediated stomach injury in rats. Sprague Dawley rats were clustered in 5 cages: A and B, normal and ulcer control rats pre-ingested with 1 % carboxymethyl cellulose (CMC)); C, reference rats had 20 mg/kg omeprazole; D and E, rats pre-supplemented with 250 and 500 mg/kg of REPP, respectively. After one hour, group A was given orally 1 % CMC, and groups B-E were given 100 % ethanol. The ulcer area, gastric acidity, and gastric wall mucus of all stomachs were determined. The gastric tissue homogenates were examined for antioxidant and MDA contents. Moreover, the gastric tissues were analyzed by histopathological and immunohistochemically assays. Acute toxicity results showed lack of any toxic effects or histological changes in rats exposed to 2 and 5 g/kg of REPP ingestion. The ulcer controls had extensive gastric mucosal damage with lower gastric juice and a reduced gastric pH. REPP treatment caused a significant reduction of the ethanol-induced gastric lacerations represented by an upsurge in gastric mucus and gastric wall glycoproteins (increased PAS), a decrease in the gastric acidity, leukocyte infiltration, positively modulated Bax and HSP 70 proteins, consequently lowered ulcer areas. REPP supplementation positively modulated oxidative stress (increased SOD, CAT, PGE2, and reduced MDA) and inflammatory cytokines (decreased serum TNF-α, IL-6, and increased IL-10) levels. The outcomes could be scientific evidence to back-up the folkloric use of A. Judaica as a medicinal remedy for oxidative stress-related disorders (gastric ulcer).

3.
Saudi Pharm J ; 31(11): 101788, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37811124

RESUMO

Solanum xanthocarpum (SX) has been used to treat a variety of diseases, including skin disorders like psoriasis (PSO). SX possesses many pharmacological activities of anti-inflammatory, anti-cancer, immunosuppressive, and healing qualities. However, the multi-target mechanism of SX on PSO still needs clarity. Materials and methods: The Indian Medicinal Plants, Phytochemicals and Therapeutics (IMPPAT) database and the Swiss Target Prediction online tool were used to find the active phytochemical components and their associated target proteins. OMIM and GeneCards databases were used to extract PSO-related targets. A Venn diagram analysis determined the common targets of SX against PSO. Subsequently, the protein-protein interaction (PPI) network and core PPI target analysis were carried out using the STRING network and Cytoscape software. Also, utilising the online Metascape and bioinformatics platform tool, a pathway enrichment analysis of common targets using the Kyoto Encyclopaedia of Genes and Genome (KEGG) and Gene Ontology (GO) databases was conducted to verify the role of targets in biological processes, cellular components and molecular functions with respect to KEGG pathways. Lastly, molecular docking simulations were performed to validate the strong affinity between components of SX and key target receptors. Results: According to the IMPPAT Database information, 8 active SX against PSO components were active. According to the PPI network and core targets study, the main targets against PSO were EGFR, SRC, STAT3, ERBB2, PTK2, SYK, EP300, CBL, TP53, and AR. Moreover, molecular docking simulations verified the binding interaction of phytochemical SX components with their PSO targets. Last but not least, enrichment analysis showed that SX is involved in several biological processes, including peptidyl-tyrosine phosphorylation, peptidyl-tyrosine modification, and peptidyl-serine modification. The relevant KEGG signalling pathways are the PI3K-AKT signalling pathway, the EGFR tyrosine kinase inhibitor resistance pathway, and the MAPK signalling pathway. Conclusion: The network pharmacology technique, which is based on data interpretation and molecular docking simulation techniques, has proven the multi-target function of SX phytoconstituents.

4.
Metabolites ; 13(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37110214

RESUMO

Euphorbia plants have a significant place in traditional medicine due to their numerous therapeutic properties, including their anti-tumor effects, which have been observed in several species. In the current study, a phytochemical investigation of Euphorbia saudiarabica methanolic extract led to the isolation and characterization of four secondary metabolites from the chloroform (CHCl3) and ethyl acetate (EtOAc) fractions, which are reported for the first time in this species. One of the constituents, saudiarabicain F (2), is a rare C-19 oxidized ingol-type diterpenoid that has not been previously reported. The structures of these compounds were determined by extensive spectroscopic (HR-ESI-MS, 1D and 2D NMR) analyses. The anticancer properties of the E. saudiarabica crude extract, its fractions and its isolated compounds were examined against several cancer cells. The active fractions were evaluated for their effects on cell-cycle progression and apoptosis induction using flow cytometry. Furthermore, RT-PCR was employed to estimate the gene-expression levels of the apoptosis-related genes. It was demonstrated that the E. saudiarabica CHCl3 and EtOAc fractions suppressed the proliferation of the cancer cells. The MCF-7 cells were the most sensitive to both fractions, with IC50 values of 22.6 and 23.2 µg/mL, respectively. Notably, both fractions caused cell-cycle arrest in the G2/M phase of the treated MCF-7 cells. The inhibition of the MCF-7 cells' proliferation was also linked with apoptosis induction by flow-cytometry analysis. Additionally, the activation of apoptosis by both fractions was demonstrated by an increase in the ratio of Bax to Bcl-2, with an increase in the expression of caspase-7. Among the isolated compounds, glutinol (1) showed potent activity against the MCF-7 cell line, with an IC50 value of 9.83 µg/mL. Our findings suggest that E. saudiarabica has apoptosis-inducing effects and shows promise as a potential source of new chemotherapeutic drugs.

5.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232319

RESUMO

The creation of novel anticancer treatments for a variety of human illnesses, including different malignancies and dangerous microbes, also potentially depends on nanoparticles including silver. Recently, it has been successful to biologically synthesize metal nanoparticles using plant extracts. The natural flavonoid 3,3', 4', 5,5', and 7 hexahydroxyflavon (myricetin) has anticancer properties. There is not much known about the regulatory effects of myricetin on the possible cell fate-determination mechanisms (such as apoptosis/proliferation) in colorectal cancer. Because the majority of investigations related to the anticancer activity of myricetin have dominantly focused on the enhancement of tumor cell uncontrolled growth (i.e., apoptosis). Thus, we have decided to explore the potential myricetin interactors and the associated biological functions by using an in-silico approach. Then, we focused on the main goal of the work which involved the synthesis of silver nanoparticles and the labeling of myricetin with it. The synthesized silver nanoparticles were examined using UV-visible spectroscopy, dynamic light scattering spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy. In this study, we have investigated the effects of myricetin on colorectal cancer where numerous techniques were used to show myricetin's effect on colon cancer cells. Transmission Electron Microscopy was employed to monitor morphological changes. Furthermore, we have combined the results of the colorectal cancer gene expression dataset with those of the myricetin interactors and pathways. Based on the results, we conclude that myricetin is able to efficiently kill human colorectal cancer cell lines. Since, it shares important biological roles and possible route components and this myricetin may be a promising herbal treatment for colorectal cancer as per an in-silico analysis of the TCGA dataset.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Neoplasias , Antibacterianos/farmacologia , Antineoplásicos/química , Flavonoides/farmacologia , Humanos , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Plants (Basel) ; 11(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35270151

RESUMO

Euphorbia cactus Ehrenb ex Boiss. is a plant species reported from central Africa and the southern Arabian Peninsula, belonging to the family of Euphorbiaceae. The plant has ethnobotanical values and is well-known for its milky latex, which has been turned into medicine to treat various ailments. To the best of our knowledge, there have been no literature reports available on phytochemical constituents and antiproliferative mechanism of E. cactus. In the current study, the phytochemical investigation of E. cactus methanolic extract (ECME) resulted in the isolation and characterization of four secondary metabolites, which are reported for the first time from this plant species. In addition, the results of 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and ferrous ion chelating (FIC) assays expressed maximum antioxidant activity by ECME and the isolated phytochemicals. Furthermore, ECME exerted a promising antiproliferative effect against different cancer cell lines, and the A549 lung cancer cells were the most sensitive with an IC50 value of 20 µg/mL. The antiproliferative action of ECME in A549 cells was associated with cell accumulation in the G2/M phase and an increase in early and late apoptosis. In addition, RT-PCR and western blot analysis revealed that ECME decreased the anti-apoptotic (Bcl-2) expression, while the expression of pro-apoptotic (Bax) and caspase-3 were increased. This study provides the first insight into the phytochemical constituents and the antiproliferative mechanism of ECME, implying that it could be exploited as a promising natural source for developing new cancer therapies. Further preclinical research is warranted to support the current results.

7.
J Ethnopharmacol ; 291: 115159, 2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35245632

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The two Tinospora species, T. crispa and T. sinensis, native to Southeast Asia, are integral components of various traditional preparations with structure-function claims to treat various disorders, including diabetes and inflammation. AIM OF THE STUDY: To assure the safety of the botanicals finished products, herb-drug interaction potential of T. crispa and T. sinensis was investigated by testing their extracts and compounds for in vitro activation of the pregnane X-receptor (PXR) and the modulation of CYP3A4 isozyme, selectively. MATERIALS AND METHODS: A total of sixteen fully characterized phytochemicals from T. crispa and T. sinensis were evaluated for PXR activation by luciferase reporter gene assay. CYP3A4 inhibition studies were carried out for eleven compounds. In addition, docking studies were performed to elucidate the possible binding modes to the PXR by the compounds using computational methods. RESULTS: Significant activation of PXR (2-fold) was observed for both extracts and non-polar fractions of T. crispa. Among the pure compounds, columbin showed highest activation of PXR (3-fold), which was comparable with the positive control, rifampicin. Vital interactions were predicted with docking simulation of PXR-columbin complex with critical amino acid residues (Trp-299) that are known for the activation of PXR. The methanolic extracts of T. crispa and T. sinensis also showed considerable CYP3A4 inhibition. CONCLUSION: T. crispa and T. sinensis, both demonstrated the potential to mediate herb-drug interaction through PXR activation and inhibition of CYP3A4 isozyme. Moreover, the elucidation of the potential to induce herb-drug interaction, by the phytochemicals of these Tinospora plants, thereby supports the need for further investigation to establish the clinical relevancy of these constituents for possible adverse interactions with pharmaceutical drugs.


Assuntos
Diabetes Mellitus , Receptores de Esteroides , Tinospora , Citocromo P-450 CYP3A/genética , Diabetes Mellitus/tratamento farmacológico , Interações Ervas-Drogas , Humanos , Extratos Vegetais/uso terapêutico , Tinospora/química
8.
Molecules ; 26(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500744

RESUMO

Cannabis use has been growing recently and it is legally consumed in many countries. Cannabis has a variety of phytochemicals including cannabinoids, which might impair the peripheral systems responses affecting inflammatory and immunological pathways. However, the exact signaling pathways that induce these effects need further understanding. The objective of this study is to investigate the serum proteomic profiling in patients diagnosed with cannabis use disorder (CUD) as compared with healthy control subjects. The novelty of our study is to highlight the differentially changes proteins in the serum of CUD patients. Certain proteins can be targeted in the future to attenuate the toxicological effects of cannabis. Blood samples were collected from 20 male individuals: 10 healthy controls and 10 CUD patients. An untargeted proteomic technique employing two-dimensional difference in gel electrophoresis coupled with mass spectrometry was employed in this study to assess the differentially expressed proteins. The proteomic analysis identified a total of 121 proteins that showed significant changes in protein expression between CUD patients (experimental group) and healthy individuals (control group). For instance, the serum expression of inactive tyrosine protein kinase PEAK1 and tumor necrosis factor alpha-induced protein 3 were increased in CUD group. In contrast, the serum expression of transthyretin and serotransferrin were reduced in CUD group. Among these proteins, 55 proteins were significantly upregulated and 66 proteins significantly downregulated in CUD patients as compared with healthy control group. Ingenuity pathway analysis (IPA) found that these differentially expressed proteins are linked to p38MAPK, interleukin 12 complex, nuclear factor-κB, and other signaling pathways. Our work indicates that the differentially expressed serum proteins between CUD and control groups are correlated to liver X receptor/retinoid X receptor (RXR), farnesoid X receptor/RXR activation, and acute phase response signaling.


Assuntos
Cannabis/química , Transtorno Depressivo/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Proteínas Tirosina Quinases/sangue , Proteômica , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/sangue , Doença Aguda , Transtorno Depressivo/sangue , Transtorno Depressivo/diagnóstico , Humanos , Masculino , Compostos Fitoquímicos/sangue , Compostos Fitoquímicos/química
9.
Molecules ; 26(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34361609

RESUMO

The use of copaiba oil has been reported since the 16th century in Amazon traditional medicine, especially as an anti-inflammatory ingredient and for wound healing. The use of copaiba oil continues today, and it is sold in various parts of the world, including the United States. Copaiba oil contains mainly sesquiterpenes, bioactive compounds that are popular for their positive effect on human health. As part of our ongoing research endeavors to identify the chemical constituents of broadly consumed herbal supplements or their adulterants, copaiba oil was investigated. In this regard, copaiba oil was subjected to repeated silica gel column chromatography to purify the compounds. As a result, one new and seven known sesquiterpenes/sesquiterpenoids were isolated and identified from the copaiba oil. The new compound was elucidated as (E)-2,6,10-trimethyldodec-8-en-2-ol. Structure elucidation was achieved by 1D- and 2D NMR and GC/Q-ToF mass spectral data analyses. The isolated chemical constituents in this study could be used as chemical markers to evaluate the safety or quality of copaiba oil.


Assuntos
Anti-Inflamatórios/química , Fabaceae/química , Óleos Voláteis/química , Óleos de Plantas/química , Sesquiterpenos/análise , Humanos , Medicina Tradicional
10.
Artigo em Inglês | MEDLINE | ID: mdl-34064950

RESUMO

The use of traditional medicinal plants in Saudi Arabia stems mainly from consumers' belief in prophetic medicine. This study was conducted to explore changes in patients' use of dietary or herbal supplements among individuals infected with COVID-19 before and during infection and the association between herbal or dietary supplements and hospitalization. A cross-sectional, questionnaire-based study was conducted enrolling symptomatic patients who had recently recovered from COVID-19. Data were collected through phone interviews, and McNemar's test was used to investigate changes to consumption of dietary or herbal supplements before and during infection. Multivariable logistic regression was used to investigate the association between supplements use during patients' infection and hospitalization. A total of 738 patients were included in this study, of whom 32.1% required hospitalization. About 57% of participants were male with a mean age of 36.5 (±11.9) years. The use of lemon/orange, honey, ginger, vitamin C, and black seed among participants significantly increased during their infection. In contrast, patients using anise, peppermint, and coffee peel before their infection were more likely to stop using them during their infection. In addition, using lemon/orange (p < 0.0001), honey (p = 0.0002), ginger (p = 0.0053), vitamin C (p = 0.0006), black seed (p < 0.0001), peppermint (p = 0.0027), costus (p = 0.0095), and turmeric (p = 0.0012) was significantly higher among nonhospitalized patients than hospitalized ones. However, in the multivariable logistic regression, only use of vitamin C (OR = 0.51; 95% CI 0.33-0.79), peppermint (OR = 0.53; 95% CI 0.31-0.90), and lemon/orange (OR = 0.54; 95% CI 0.33-0.88) was associated with significantly lower odds of hospitalization. The study reveals that patients' consumption of dietary or herbal supplements changed in response to their COVID-19 infection, with hospitalized patients having a lower likelihood of using these supplements. Because some supplements were associated with lower odds of hospitalization, these supplements or their bioactive components should be further investigated as feasible options for COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , Adulto , Estudos Transversais , Suplementos Nutricionais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Arábia Saudita/epidemiologia , Adulto Jovem
11.
Planta Med ; 87(5): 417-427, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33086389

RESUMO

Moringa oleifera is known as a drumstick tree and is cultivated in the subtropics and tropics. It exhibits antihypertensive and antidiabetic effects. An ultra-high-performance liquid chromatography method was developed for the determination of 9 phytochemicals in M. oleifera leaves and marketed products. The efficient separation was achieved within 7 min with a temperature of 45 °C by using a C-18 column as the stationary phase and water/acetonitrile with 0.05% formic acid as the mobile phase. The method was validated for linearity, repeatability, limits of detection, and limits of quantification. The limits of detections of phenolic compounds 1:  - 9: were as low as 0.2 µg/mL. The photodiode array detector at 220 and 255 nm wavelengths was recruited for quantification. The key phytochemicals were detected in the range of 0.42 to 2.57 mg/100 mg sample weight in 13 dietary supplements. This study considers the quantitative analysis for lignans in M. oleifera for the first time. Isoquercitrin (5: ) and quercetin 3-O-(6-O-malonyl)-ß-D-glucopyranoside (6: ) predominates the leaves of M. oleifera with inherent degradable nature detected for compound 6: . Niazirin (2: ) was detected in amounts between 0.010 - 0.049 mg/100 mg while compound 1: was undetectable and potentially an artifact because of the fractionation process. The characterization and confirmation of components were achieved by liquid chromatography-electrospray ionization-mass spectrometry with extractive ion monitoring for the positive and negative ion modes. The developed and validated method is robust and rapid in the conclusive quantification of phytochemicals and authentication of the Moringa samples for quality assurance.


Assuntos
Moringa oleifera , Cromatografia Líquida de Alta Pressão , Suplementos Nutricionais/análise , Compostos Fitoquímicos , Árvores
12.
Phytomedicine ; 60: 153010, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31301970

RESUMO

BACKGROUND: Moringa oleifera Lam. is known as a drumstick tree that is widely cultivated in various subtropical and tropical provinces. Previous studies indicated that both aqueous and methanolic extracts of M. oleifera leaves have potent inhibitory effects on two major drug metabolizing Cytochrome P450 enzymes, namely, CYP3A4 and CYP2D6. PURPOSE: The current study was aimed to isolate the secondary metabolites from M. oleifera and investigate their cytotoxicity and inhibitory effects on CYP3A4 and CYP2D6 to assess their herb-drug interaction (HDI) potential. METHODS: Chemical structure elucidation was achieved by interpreting the spectroscopic data (UV, IR, 1D, and 2D NMR experiments), confirming by HR-ESI-MS, and comparing with the previously reported data in the literature. All the isolates were evaluated for their cytotoxicity against a panel of cell lines (SK-MEL, KB, BT-549, SK-OV-3, VERO, LLC-PK1, and HepG2) and inhibition of two principal CYP isozymes (CYP3A4 and CYP2D6). RESULTS: Phytochemical investigation of M. oleifera leaves resulted in the isolation and characterization of one new compound, namely omoringone (1), along with twelve known secondary metabolites (2-13) belonging to several chemical classes including flavonoids, terpenoids, lignans, and phenylalkanoids. A plausible biosynthetic pathway for compound 1 was provided. Because of the low isolation yield and limited supply, omoringone (1) and niazirin (12) were successively synthesized. No cytotoxicity was observed on any of the tested cell lines up to 50 µM. The extract exhibited an inhibitory effect on CYP3A4 isoform (IC50 = 52.5 ±â€¯2.5 µg/ml). Among the isolates, 1-4 and 7-9 inhibited CYP3A4 with the IC50 values ranging from 41.5 to 100 µM with no remarkable effect on CYP2D6 isozyme. CONCLUSION: This work aided in ascertaining components of M. oleifera contributing to CYP3A4 inhibition exhibited by the extract using an in vitro assay. Nonetheless, further studies are warranted to determine the bioavailability of the phytochemicals and extrapolate these findings in more physiologically relevant conditions to further establish the clinical relevance of in vitro observations.


Assuntos
Citocromo P-450 CYP2D6/efeitos dos fármacos , Citocromo P-450 CYP3A/efeitos dos fármacos , Interações Ervas-Drogas , Moringa oleifera/química , Extratos Vegetais/farmacologia , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A , Humanos , Isoenzimas/efeitos dos fármacos , Extratos Vegetais/química , Folhas de Planta/química , Árvores
13.
J Agric Food Chem ; 67(17): 4967-4975, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30955332

RESUMO

Rooibos tea ( Aspalathus linearis) is a well-known South African herbal tea enjoyed worldwide. Limited reports indicate the potential of rooibos tea to alter the activity of certain cytochrome P450 (CYP450) isozymes. In this study, the phytochemical investigation of MeOH extract of A. linearis (leaves and stems) resulted in the isolation and characterization of 11 phenolic compounds. The MeOH extract exhibited significant inhibition of the major human CYP450 isozymes (CYP3A4, CYP1A2, CYP2D6, CYP2C9, and CYP2C19). The strongest inhibition was observed by the extract for CYP3A4 (IC50 1.7 ± 0.1 µg/mL) followed by CYP2C19 (IC50 4.0 ± 0.3 µg/mL). Among the tested phytochemicals, the most potent inhibitors were isovitexin on CYP3A4 (IC50 3.4 ± 0.2 µM), vitexin on CYP2C9 (IC50 8.0 ± 0.2 µM), and thermopsoside on CYP2C19 (IC50 9.5 ± 0.2 µM). The two major, structurally related compounds aspalathin and nothofagin exhibited a moderate pregnane-X receptor (PXR) activation, which was associated with increased mRNA expression of CYP3A4 and CYP1A2, respectively. These results indicate that a high intake of nutraceuticals containing rooibos extracts may pose a risk of herb-drug interactions when consumed concomitantly with clinical drugs that are substrates of CYP enzymes.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Aspalathus/química , Sistema Enzimático do Citocromo P-450/química , Preparações de Plantas/química , Receptor de Pregnano X/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Aspalathus/metabolismo , Linhagem Celular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Inocuidade dos Alimentos , Humanos , Folhas de Planta/química , Preparações de Plantas/metabolismo , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo , Chás de Ervas/análise
14.
Planta Med ; 85(2): 145-153, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30170324

RESUMO

Fadogia agrestis is used in traditional African medicine as an analgesic and for anti-inflammatory and aphrodisiac activities. An ultra-high-performance liquid chromatography method was developed for the determination of 11 chemical constituents from roots and aerial parts of F. agrestis. The separation was achieved within 7 min by using C-18 column material and a water/acetonitrile mobile phase, both containing 0.1% formic acid gradient system with a temperature of 45 °C. The method was validated for linearity, repeatability, limits of detection, and limits of quantification. The limits of detection of phenolic compounds were found to be in the range from 0.025 to 0.1 µg/mL. The wavelengths used for quantification with the photodiode array detector were 238, 254, 291, and 325 nm. Twelve of 17 dietary supplements contained phenolic compounds in the range from 0.3 to 2.7 mg/d. The phenolic compounds were not detected in five dietary supplements. Liquid chromatography-mass spectrometry coupled with electrospray ionization interface method is described for the identification and confirmation of compounds from plant samples and dietary supplements claiming to contain F. agrestis. This method involved the use of [M + H]+ and [M + Na]+ ions in the positive mode and [M - H]- ions in the negative mode with extractive ion monitoring. The developed method is simple, economic, rapid, and especially suitable for quality control and chemical fingerprint analysis of F. agrestis.


Assuntos
Suplementos Nutricionais/análise , Fenóis/análise , Plantas Medicinais/química , Rubiaceae/química , Cromatografia Líquida de Alta Pressão , Limite de Detecção , Espectrometria de Massas , Medicinas Tradicionais Africanas , Fenóis/química , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA