Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Viruses ; 13(9)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34578374

RESUMO

Ebola virus (EBOV), one of the most infectious human viruses and a leading cause of viral hemorrhagic fever, imposes a potential public health threat with several recent outbreaks. Despite the difficulties associated with working with this pathogen in biosafety level-4 containment, a protective vaccine and antiviral therapeutic were recently approved. However, the high mortality rate of EBOV infection underscores the necessity to continuously identify novel antiviral strategies to help expand the scope of prophylaxis/therapeutic management against future outbreaks. This includes identifying antiviral agents that target EBOV entry, which could improve the management of EBOV infection. Herein, using EBOV glycoprotein (GP)-pseudotyped particles, we screened a panel of natural medicinal extracts, and identified the methanolic extract of Perilla frutescens (PFME) as a robust inhibitor of EBOV entry. We show that PFME dose-dependently impeded EBOV GP-mediated infection at non-cytotoxic concentrations, and exerted the most significant antiviral activity when both the extract and the pseudoparticles are concurrently present on the host cells. Specifically, we demonstrate that PFME could block viral attachment and neutralize the cell-free viral particles. Our results, therefore, identified PFME as a potent inhibitor of EBOV entry, which merits further evaluation for development as a therapeutic strategy against EBOV infection.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Perilla frutescens/química , Extratos Vegetais/farmacologia , Proteínas do Envelope Viral , Internalização do Vírus/efeitos dos fármacos , Ebolavirus/química , Ebolavirus/genética , Células HEK293 , Humanos , Metanol/química , Metanol/farmacologia , Extratos Vegetais/química , Proteínas do Envelope Viral/genética
2.
Biochemistry ; 57(44): 6367-6378, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30298725

RESUMO

Ebola virus (EBOV) is a filovirus that causes a severe and rapidly progressing hemorrhagic syndrome; a recent epidemic illustrated the urgent need for novel therapeutic agents because no drugs have been approved for treatment of Ebola virus. A key contribution to the high lethality observed during EBOV outbreaks comes from viral evasion of the host antiviral innate immune response in which viral protein VP35 plays a crucial role, blocking interferon type I production, first by masking the viral double-stranded RNA (dsRNA) and preventing its detection by the pattern recognition receptor RIG-I. Aiming to identify inhibitors of the interaction of VP35 with the viral dsRNA, counteracting the VP35 viral innate immune evasion, we established a new methodology for high-yield recombinant VP35 (rVP35) expression and purification and a novel and robust fluorescence-based rVP35-RNA interaction assay ( Z' factor of 0.69). Taking advantage of such newly established methods, we screened a small library of Sardinian natural extracts, identifying Limonium morisianum as the most potent inhibitor extract. A bioguided fractionation led to the identification of myricetin as the component that can inhibit rVP35-dsRNA interaction with an IC50 value of 2.7 µM. Molecular docking studies showed that myricetin interacts with the highly conserved region of the VP35 RNA binding domain, laying the basis for further structural optimization of potent inhibitors of VP35-dsRNA interaction.


Assuntos
Antivirais/farmacologia , Flavonoides/farmacologia , Fluorescência , Extratos Vegetais/farmacologia , RNA de Cadeia Dupla/antagonistas & inibidores , RNA Viral/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Humanos , Simulação de Acoplamento Molecular , Plumbaginaceae/química , Conformação Proteica , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA