Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 200(4): 1811-1825, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34075493

RESUMO

A green and ecofriendly bio-based synthesis of nano selenium particles was performed using the Bacillus subtilis and the products were characterized by field emission scanning electron microscope (FESEM), dynamic light scattering (DLS) and transmission electron microscopy (TEM) methods. Dietary treatments included a control diet nonsupplemented with selenium and control diet supplemented with different sources of selenium (sodium selenite, organic Se, and nano-bio Se), resulting in a total of 4 treatments with 6 replicates of 10 chicks. Broilers were assessed for performance measures, ileum morphometry, and microbial population and jejunum tight junction proteins' relative expression. The particle size of the synthesized selenium nanoparticles ranges 40 to 150 nm, with crystalline spherical shape. Inclusion of selenium increased body weight (BW) and improved FCR compared to the control diet (P < 0.05). Among the selenium sources, the highest BW were achieved in chicks fed sodium selenite or nano-bio Se. Selenium supplementation meaningfully (P < - 0.01) changed ileum morphology and reduced ileum microbiota. Inclusion of selenium increased the relative weight of the carcass, breast, and thigh and reduced the relative weight of the liver and bursa of Fabricius on day 42 (P < 0.01). The relative length of duodenum, jejunum, and ileum were increased on day 14 but reduced on day 42 by inclusion of selenium (P < 0.05). Supplementation of selenium increased (P < 0.01) the expression of claudin-1, occludin, and zonula occluden-1 and reduced (P < 0.01) the expression of claudin-5 and zonula occluden-2 on day 28. Inclusion of nano-bio selenium increased (P < 0.05) the expression of occludin, zonula occluden-1, and zonula occluden-2 and reduced (P < 0.05) the expression of claudin-5 compared to the organic selenium and sodium selenite on day 42. In conclusion, this data suggest feasibility of the biosynthesis of selenium nanoparticles by Bacillus subtilis. Additionally, the data reported herein demonstrate that nano-bio selenium can effectively improve performance and intestinal integrity compared to the common organic and inorganic sources of selenium.


Assuntos
Microbiota , Selênio , Ração Animal/análise , Animais , Bacillus subtilis , Galinhas/metabolismo , Dieta , Suplementos Nutricionais , Selênio/metabolismo , Selênio/farmacologia , Junções Íntimas/metabolismo
2.
Phytother Res ; 36(1): 395-414, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34841609

RESUMO

Number trials have evaluated the effect of almond intake on glycemic control in adults; however, the results remain equivocal. Therefore, the present meta-analysis aims to examine the effectiveness of almond intake on glycemic parameters. Online databases including PubMed, Scopus, ISI web of science, Embase, and Cochrane Library were searched up to August 2021 for trials that examined the effect of almond intake on glycemic control parameters including fasting blood sugar (FBS), insulin, HOMA-IR, and HbA1C. Treatment effects were expressed as mean difference (MD) and the standard deviation (SD) of outcomes. To estimate the overall effect of almond intake, we used the random-effects model. In total, 24 studies with 31 arms were included in our analysis. The meta-analysis revealed that almond intake did not significantly change the concentrations of FBS, HbA1c, insulin levels, and HOMA-IR. In conclusion, there is currently no convincing evidence that almonds have a clear beneficial effect on glycemic control. Future studies are needed before any confirmed conclusion could be drowned.


Assuntos
Resistência à Insulina , Prunus dulcis , Glicemia , Humanos , Insulina , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA