Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Expert Opin Ther Targets ; 27(8): 679-703, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37651647

RESUMO

INTRODUCTION: Gout arthritis (GA) is an intermittent inflammatory disease affecting approximately 10% of the worldwide population. Symptomatic phases (acute flares) are timely spaced by asymptomatic periods. During an acute attack, redness, joint swelling, limited movement, and excruciating pain are common symptoms. However, the current available therapies are not fully effective in reducing symptoms and offer numerous side effects. Therefore, unveiling new drug targets and effector molecules are required in developing novel GA therapeutics. AREAS COVERED: This review discusses the pathophysiological mechanisms of GA and explores potential pharmacological targets to ameliorate disease outcome. In addition, we listed promising pre-clinical studies demonstrating effector molecules with therapeutical potential. Among those, we emphasized the importance of natural products, including traditional Chinese medicine formulas and their multitarget mechanisms of action. EXPERT OPINION: In our search, we observed that there is a massive gap between pre-clinical and clinical knowledge. Only a minority (4.4%) of clinical trials aimed to intervene by applying natural products or current hot targets described herein. In this sense, we envisage four possibilities for GA therapeutics, which include the repurposing of existing therapies, ALX/FPR2 agonism for improvement in disease outcome, the use of multitarget drugs (e.g. natural products), and targeting the neuroinflammatory component of GA.


Assuntos
Produtos Biológicos , Gota , Humanos , Gota/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico
2.
Int J Pharm ; 642: 123206, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37419432

RESUMO

Improved therapies for inflammatory bowel diseases are sorely needed. Novel therapeutic agents and the development of controlled release systems for targeted tissue delivery are interesting approaches to overcome these barriers. We investigated the activity of trans-chalcone (T) in acetic acid-induced colitis in mice and developed, characterized, and determined the therapeutic effect of pectin/casein polymer microcapsules containing T (MT) in a colitis mouse model. In vitro, compound release was achieved in simulated intestinal fluid but not in the simulated gastric fluid. In vivo, since T at the dose of 3 mg/kg but not 0.3 mg/kg ameliorated colitis, we next tested the effects of MT at 0.3 mg/kg (non-effective dose). MT, but not free T at 0.3 mg/kg, significantly improved colitis outcomes such as neutrophil recruitment, antioxidant capacity, cytokine production, and NF-kB activation. This translated into reduced macro and microscopic damage in the colon. T release from the microcapsules is mediated by a pH-dependent and pectinase-regulated mechanism that provide controlled and prolonged release of T. Moreover, MT lowered the required dose for T therapeutic effect, indicating that could be a suitable pharmaceutical approach to colitis treatment. This is the first demonstration that T or MT is effective at reducing the signs of colitis.


Assuntos
Chalcona , Chalconas , Colite , Camundongos , Animais , Caseínas , Chalcona/farmacologia , Cápsulas/farmacologia , Pectinas , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , NF-kappa B , Modelos Animais de Doenças
3.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446699

RESUMO

During an infection, inflammation mobilizes immune cells to eliminate the pathogen and protect the host. However, inflammation can be detrimental when exacerbated and/or chronic. The resolution phase of the inflammatory process is actively orchestrated by the specialized pro-resolving lipid mediators (SPMs), generated from omega-3 and -6 polyunsaturated fatty acids (PUFAs) that bind to different G-protein coupled receptors to exert their activity. As immunoresolvents, SPMs regulate the influx of leukocytes to the inflammatory site, reduce cytokine and chemokine levels, promote bacterial clearance, inhibit the export of viral transcripts, enhance efferocytosis, stimulate tissue healing, and lower antibiotic requirements. Metabolomic studies have evaluated SPM levels in patients and animals during infection, and temporal regulation of SPMs seems to be essential to properly coordinate a response against the microorganism. In this review, we summarize the current knowledge on SPM biosynthesis and classifications, endogenous production profiles and their effects in animal models of bacterial, viral and parasitic infections.


Assuntos
Ácidos Graxos Ômega-3 , Doenças Parasitárias , Animais , Inflamação/metabolismo , Eicosanoides , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Citocinas , Mediadores da Inflamação/metabolismo
4.
J Ethnopharmacol ; 273: 113980, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33652112

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sphagneticola trilobata (L.) Pruski is a plant species belonging to the Asteraceae family. Kaurenoid acid (KA) is a diterpene metabolite and one of the active ingredients of Sphagneticola trilobata (L.) Pruski. Extracts containing KA are used in traditional medicine to treat pain, inflammation, and infection. AIM: The goal of the present study was to investigate the in vivo effects of KA (1-10 mg/kg, per oral gavage) upon LPS inoculation in mice by intraperitoneal (i.p.) or intraplantar (i.pl.; subcutaneous plantar injection) routes at the dose of 200 ng (200 µL or 25 µL, respectively). METHODS: In LPS paw inflammation, mechanical and thermal hyperalgesia MPO activity and oxidative imbalance (TBARS, GSH, ABTS and FRAP assays) were evaluated. In LPS peritonitis we evaluated leukocyte migration, cytokine production, oxidative stress, and NF-κB activation. RESULTS: KA inhibited LPS-induced mechanical and thermal hyperalgesia, MPO activity and modulated redox status in the mice paw. Pre- and post-treatment with KA inhibited migration of neutrophils and monocytes in LPS peritonitis. KA inhibited the pro-inflammatory/hyperalgesic cytokine (e.g., TNF-α, IL-1ß and IL-33) production while enhanced anti-inflammatory/analgesic cytokine IL-10 in peritoneal cavity. In agreement with the effect of KA over pro-inflammatory cytokines it inhibited oxidative stress (total ROS, superoxide production and superoxide positive cells) and NF-κB activation during peritonitis. CONCLUSION: KA efficiently dampens LPS-induced peritonitis and hyperalgesia in vivo, suggesting it as a suitable candidate to control excessive inflammation and pain during gram-negative bacterial infections and bringing mechanistic explanation to the ethnopharmacological application of Sphagneticola trilobata (L.) Pruski in inflammation and infection.


Assuntos
Analgésicos/uso terapêutico , Asteraceae/química , Diterpenos/uso terapêutico , Lipopolissacarídeos/toxicidade , Peritonite/induzido quimicamente , Analgésicos/química , Animais , Diterpenos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Peroxidação de Lipídeos , Masculino , Camundongos , Estrutura Molecular , NF-kappa B/genética , NF-kappa B/metabolismo , Dor/tratamento farmacológico , Peritonite/tratamento farmacológico , Peroxidase/metabolismo
5.
Molecules ; 25(3)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050623

RESUMO

Pathological pain can be initiated after inflammation and/or peripheral nerve injury. It is a consequence of the pathological functioning of the nervous system rather than only a symptom. In fact, pain is a significant social, health, and economic burden worldwide. Flavonoids are plant derivative compounds easily found in several fruits and vegetables and consumed in the daily food intake. Flavonoids vary in terms of classes, and while structurally unique, they share a basic structure formed by three rings, known as the flavan nucleus. Structural differences can be found in the pattern of substitution in one of these rings. The hydroxyl group (-OH) position in one of the rings determines the mechanisms of action of the flavonoids and reveals a complex multifunctional activity. Flavonoids have been widely used for their antioxidant, analgesic, and anti-inflammatory effects along with safe preclinical and clinical profiles. In this review, we discuss the preclinical and clinical evidence on the analgesic and anti-inflammatory proprieties of flavonoids. We also focus on how the development of formulations containing flavonoids, along with the understanding of their structure-activity relationship, can be harnessed to identify novel flavonoid-based therapies to treat pathological pain and inflammation.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Analgésicos/química , Animais , Anti-Inflamatórios não Esteroides/química , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Humanos , Inflamação/tratamento farmacológico , Relação Estrutura-Atividade
6.
Pharmacol Res ; 151: 104549, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31743775

RESUMO

We now appreciate that the mechanism of resolution depends on an active and time-dependent biosynthetic shift from pro-inflammatory to pro-resolution mediators, the so-called specialized pro-resolving lipid mediators (SPMs). These SPMs are biosynthesized from the omega-3 fatty acids arachidonic acid (AA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), or docosahexaenoic acid (DHA). Despite effective for a fraction of patients with rheumatic diseases and neuropathic pain, current analgesic therapies such as biological agents, opioids, corticoids, and gabapentinoids cause unwanted side effects, such as immunosuppression, addiction, or induce analgesic tolerance. A growing body of evidence demonstrates that isolated SPMs show efficacy at very low doses and have been successively used as therapeutic drugs to treat pain and infection in experimental models showing no side effects. Moreover, SPMs work as immunoresolvents and some of them present long-lasting analgesic and anti-inflammatory effects (i.e. block pain without immunosuppressive effects). In this review, we focus on how SPMs block pain, infection and neuro-immune interactions and, therefore, emerge as a new class of non-immunosuppressive and non-opioid analgesic drugs.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Ácidos Graxos Ômega-3/uso terapêutico , Dor/tratamento farmacológico , Analgésicos não Narcóticos/química , Analgésicos não Narcóticos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/farmacologia , Humanos , Inflamação/tratamento farmacológico
7.
Br J Pharmacol ; 176(11): 1728-1744, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30830967

RESUMO

BACKGROUND AND PURPOSE: Maresin 1 (MaR1) is a specialised pro-resolving lipid mediator with anti-inflammatory and analgesic activities. In this study, we addressed the modulation of peripheral and spinal cord cells by MaR1 in the context of inflammatory pain. EXPERIMENTAL APPROACH: Mice were treated with MaR1 before intraplantar injection of carrageenan or complete Freund's adjuvant (CFA). Mechanical hyperalgesia was assessed using the electronic von Frey and thermal hyperalgesia using a hot plate. Spinal cytokine production and NF-κB activation were determined by ELISA and astrocytes and microglia activation by RT-qPCR and immunofluorescence. CGRP release by dorsal root ganglia (DRG) neurons was determined by EIA. Neutrophil and macrophage recruitment were determined by immunofluorescence, flow cytometry, and colorimetric methods. Trpv1 and Nav1.8 expression and calcium imaging of DRG neurons were determined by RT-qPCR and Fluo-4AM respectively. KEY RESULTS: MaR1 reduced carrageenan- and CFA-induced mechanical and thermal hyperalgesia and neutrophil and macrophage recruitment proximal to CGRP+ fibres in the paw skin. Moreover, MaR1 reduced NF-κB activation, IL-1ß and TNF-α production, and spinal cord glial cells activation. In the DRG, MaR1 reduced CFA-induced Nav1.8 and Trpv1 mRNA expression and calcium influx and capsaicin-induced release of CGRP by DRG neurons. CONCLUSIONS AND IMPLICATIONS: MaR1 reduced DRG neurons activation and CGRP release explaining, at least in part, its analgesic and anti-inflammatory effects. The enduring analgesic and anti-inflammatory effects and also post-treatment activity of MaR1 suggest that specialised pro-resolving lipid mediators have potential as a new class of drugs for the treatment of inflammatory pain.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Ácidos Docosa-Hexaenoicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Dor/tratamento farmacológico , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Carragenina , Ácidos Docosa-Hexaenoicos/farmacologia , Adjuvante de Freund , Gânglios Espinais/efeitos dos fármacos , Temperatura Alta , Hiperalgesia/genética , Hiperalgesia/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.8/genética , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Dor/genética , Dor/metabolismo , Estimulação Física , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Canais de Cátion TRPV/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Inflammopharmacology ; 27(6): 1229-1242, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30612217

RESUMO

BACKGROUND: Naringenin is a biologically active analgesic, anti-inflammatory, and antioxidant flavonoid. Naringenin targets in inflammation-induced articular pain remain poorly explored. METHODS: The present study investigated the cellular and molecular mechanisms involved in the analgesic/anti-inflammatory effects of naringenin in zymosan-induced arthritis. Mice were pre-treated orally with naringenin (16.7-150 mg/kg), followed by intra-articular injection of zymosan. Articular mechanical hyperalgesia and oedema, leucocyte recruitment to synovial cavity, histopathology, expression/production of pro- and anti-inflammatory mediators and NFκB activation, inflammasome component expression, and oxidative stress were evaluated. RESULTS: Naringenin inhibited articular pain and oedema in a dose-dependent manner. The dose of 50 mg/kg inhibited leucocyte recruitment, histopathological alterations, NFκB activation, and NFκB-dependent pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-33), and preproET-1 mRNA expression, but increased anti-inflammatory IL-10. Naringenin also inhibited inflammasome upregulation (reduced Nlrp3, ASC, caspase-1, and pro-IL-1ß mRNA expression) and oxidative stress (reduced gp91phox mRNA expression and superoxide anion production, increased GSH levels, induced Nrf2 protein in CD45+ hematopoietic recruited cells, and induced Nrf2 and HO-1 mRNA expression). CONCLUSIONS: Naringenin presents analgesic and anti-inflammatory effects in zymosan-induced arthritis by targeting its main physiopathological mechanisms. These data highlight this flavonoid as an interesting therapeutic compound to treat joint inflammation, deserving additional pre-clinical and clinical studies.


Assuntos
Artrite/tratamento farmacológico , Flavanonas/uso terapêutico , Antígenos Comuns de Leucócito/análise , Fator 2 Relacionado a NF-E2/fisiologia , Zimosan/farmacologia , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Flavanonas/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Inflamassomos/efeitos dos fármacos , Articulação do Joelho/patologia , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
9.
Sci Rep ; 8(1): 13979, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228306

RESUMO

Gout arthritis (GA) is a painful inflammatory disease in response to monosodium urate (MSU) crystals in the joints. 15deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is a natural activator of PPAR-γ with analgesic, anti-inflammatory, and pro-resolution properties. Thus, we aimed to evaluate the effect and mechanisms of action of 15d-PGJ2 nanocapsules (NC) in the model of GA in mice, since a reduction of 33-fold in the dose of 15d-PGJ2 has been reported. Mice were treated with 15d-PGJ2-loaded NC, inert NC, free 15d-PGJ2 (without NC), or 15d-PGJ2-loaded NC+ GW9662, a PPAR-γ inhibitor. We show that 15d-PGJ2-loaded NC provided analgesic effect in a dose that the free 15d-PGJ2 failed to inhibiting pain and inflammation. Hence, 15d-PGJ2-loaded NC reduced MSU-induced IL-1ß, TNF-α, IL-6, IL-17, and IL-33 release and oxidative stress. Also, 15d-PGJ2-loaded NC decreased the maturation of IL-1ß in LPS-primed BMDM triggered by MSU. Further, 15d-PGJ2-loaded NC decreased the expression of the components of the inflammasome Nlrp3, Asc, and Pro-caspase-1, as consequence of inhibiting NF-κB activation. All effects were PPAR-γ-sensitive. Therefore, we demonstrated that 15d-PGJ2-loaded NC present analgesic and anti-inflammatory properties in a PPAR-γ-dependent manner inhibiting IL-1ß release and NF-κB activation in GA. Concluding, 15d-PGJ2-loaded NC ameliorates MSU-induced GA in a PPAR-γ-sensitive manner.


Assuntos
Artrite Experimental/prevenção & controle , Artrite Gotosa/prevenção & controle , Inflamação/tratamento farmacológico , Nanocápsulas/administração & dosagem , PPAR gama/metabolismo , Dor/tratamento farmacológico , Prostaglandina D2/análogos & derivados , Animais , Antioxidantes/toxicidade , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Gotosa/metabolismo , Artrite Gotosa/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Dor/induzido quimicamente , Dor/metabolismo , Prostaglandina D2/farmacologia , Ácido Úrico/toxicidade
10.
Molecules ; 21(7)2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27367653

RESUMO

In this review, we discuss the importance of capsaicin to the current understanding of neuronal modulation of pain and explore the mechanisms of capsaicin-induced pain. We will focus on the analgesic effects of capsaicin and its clinical applicability in treating pain. Furthermore, we will draw attention to the rationale for other clinical therapeutic uses and implications of capsaicin in diseases such as obesity, diabetes, cardiovascular conditions, cancer, airway diseases, itch, gastric, and urological disorders.


Assuntos
Capsaicina/farmacologia , Capsaicina/uso terapêutico , Dor/tratamento farmacológico , Analgésicos/química , Analgésicos/isolamento & purificação , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Capsaicina/química , Capsaicina/isolamento & purificação , Capsicum/química , Estudos Clínicos como Assunto , Composição de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Humanos , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Dor/etiologia , Dor/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
11.
J Photochem Photobiol B ; 162: 367-373, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27424097

RESUMO

Inflammatory bowel disease (IBD) presents intense inflammatory infiltrate, crypt abscesses, ulceration and even loss of function. Despite the clinical relevance of IBD, its current therapy remains poorly effective. Infrared wavelength phototherapy shows therapeutic potential on inflammation. Our goal was to evaluate whether light-emitting diodes (LED) at 940nm are capable of mitigating the colitis-induced inflammatory process in mice. Forty male Swiss mice were assigned into five groups: control; control treated with LED therapy; colitis without treatment; colitis treated with LED therapy; colitis treated with Prednisolone. Experimental colitis was induced by acetic acid 7.5% (pH2.5) rectal administration. LED therapy was performed with light characterized by wavelength of 940nm, 45nm bandwidth, intensity of 4.05J/cm(2), total power of 270mW and total dose of 64.8J for 4min in a single application. Colitis-induced intestinal transit delay was inhibited by LED therapy. Colitis caused an increase of colon dimensions (length, diameter, total area) and colon weight (edema), which were inhibited by LED therapy. LED therapy also decreased colitis-induced tissue gross lesion, myeloperoxidase activity, microscopic tissue damage score and the presence of inflammatory infiltrate in all intestinal layers. Furthermore, LED therapy inhibited colitis-induced IL-1ß, TNF-α, and IL-6 production. We conclude LED therapy at 940nm inhibited experimental colitis-induced colon inflammation in mice, therefore, rendering it a promising therapeutic approach that deserves further investigation.


Assuntos
Colite/terapia , Equipamentos e Provisões Elétricas , Fototerapia , Animais , Colite/complicações , Colite/metabolismo , Colite/fisiopatologia , Colo/metabolismo , Colo/efeitos da radiação , Edema/complicações , Trânsito Gastrointestinal/efeitos da radiação , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Masculino , Camundongos , Peroxidase/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
12.
Pharmacol Res ; 112: 84-98, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26826283

RESUMO

The inflammatory response in the joint can induce an intense accumulation of leukocytes in the tissue that frequently results in severe local damage and loss of function. Neutrophils are essential cells to combat many pathogens, but their arsenal can contribute or aggravate articular inflammation. Here we summarized some aspects of neutrophil biology, their role in inflammation and indicated how the modulation of neutrophil functions could be useful for the treatment of different forms of arthritis.


Assuntos
Anti-Infecciosos , Anti-Inflamatórios/uso terapêutico , Artrite/tratamento farmacológico , Artrite/imunologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/imunologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Artrite Infecciosa/tratamento farmacológico , Artrite Infecciosa/imunologia , Curcumina , Descoberta de Drogas , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Camundongos , Terapia de Alvo Molecular , Infiltração de Neutrófilos/efeitos dos fármacos
13.
Phytother Res ; 29(7): 1097-101, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25851311

RESUMO

Hypericum perforatum is a medicinal plant with anti-inflammatory and antioxidant properties, which is commercially available for therapeutic use in Brazil. Herein the effect of H. perforatum extract on paracetamol (acetaminophen)-induced hepatotoxicity, lethality, inflammation, and oxidative stress in male swiss mice were investigated. HPLC analysis demonstrated the presence of rutin, quercetin, hypericin, pseudohypericin, and hyperforin in H. perforatum extract. Paracetamol (0.15-3.0 g/kg, p.o.) induced dose-dependent mortality. The sub-maximal lethal dose of paracetamol (1.5 g/kg, p.o.) was chosen for the experiments in the study. H. perforatum (30-300 mg/kg, i.p.) dose-dependently reduced paracetamol-induced lethality. Paracetamol-induced increase in plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations, and hepatic myeloperoxidase activity, IL-1ß, TNF-α, and IFN-γ concentrations as well as decreased reduced glutathione (GSH) concentrations and capacity to reduce 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate radical cation; ABTS˙(+) ) were inhibited by H. perforatum (300 mg/kg, i.p.) treatment. Therefore, H. perforatum protects mice against paracetamol-induced lethality and liver damage. This effect seems to be related to the reduction of paracetamol-induced cytokine production, neutrophil recruitment, and oxidative stress.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Hypericum/química , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Alanina Transaminase/sangue , Animais , Antracenos , Anti-Inflamatórios/farmacologia , Antioxidantes/uso terapêutico , Aspartato Aminotransferases/sangue , Glutationa/metabolismo , Masculino , Camundongos , Perileno/análogos & derivados , Perileno/análise , Floroglucinol/análogos & derivados , Floroglucinol/análise , Plantas Medicinais/química , Quercetina/análise , Rutina/análise , Terpenos/análise , Fator de Necrose Tumoral alfa/metabolismo
14.
Naunyn Schmiedebergs Arch Pharmacol ; 387(11): 1053-68, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25116441

RESUMO

Nitric oxide plays an important role in various biological processes including antinociception. The control of its local concentration is crucial for obtaining the desired effect and can be achieved with exogenous nitric oxide-carriers such as ruthenium complexes. Therefore, we evaluated the analgesic effect and mechanism of action of the ruthenium nitric oxide donor [Ru(HEDTA)NO] focusing on the role of cytokines, oxidative stress and activation of the cyclic guanosine monophosphate/protein kinase G/ATP-sensitive potassium channel signaling pathway. It was observed that [Ru(HEDTA)NO] inhibited in a dose-dependent (1-10 mg/kg) manner the acetic acid-induced writhing response. At the dose of 1 mg/kg, [Ru(HEDTA)NO] inhibited the phenyl-p-benzoquinone-induced writhing response, and formalin- and complete Freund's adjuvant-induced licking and flinching responses. Systemic and local treatments with [Ru(HEDTA)NO] also inhibited the carrageenin-induced mechanical hyperalgesia and increase of myeloperoxidase activity in paw skin samples. Mechanistically, [Ru(HEDTA)NO] inhibited carrageenin-induced production of the hyperalgesic cytokines tumor necrosis factor-α and interleukin-1ß, and decrease of reduced glutathione levels. Furthermore, the inhibitory effect of [Ru(HEDTA)NO] in the carrageenin-induced hyperalgesia and myeloperoxidase activity was prevented by the treatment with ODQ (soluble guanylyl cyclase inhibitor), KT5823 (protein kinase G inhibitor) and glybenclamide (ATP-sensitive potassium channel inhibitor), indicating that [Ru(HEDTA)NO] inhibits inflammatory hyperalgesia by activating the cyclic guanosine monophosphate/protein kinase G/ATP-sensitive potassium channel signaling pathway, respectively. These results demonstrate that [Ru(HEDTA)NO] exerts its analgesic effect in inflammation by inhibiting pro-nociceptive cytokine production, oxidative imbalance and activation of the nitric oxide/cyclic guanosine monophosphate/protein kinase G/ATP-sensitive potassium channel signaling pathway in mice.


Assuntos
Hiperalgesia/tratamento farmacológico , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Compostos de Rutênio/farmacologia , Animais , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ácido Edético/administração & dosagem , Ácido Edético/análogos & derivados , Ácido Edético/química , Inflamação/tratamento farmacológico , Canais KATP/metabolismo , Masculino , Camundongos , Doadores de Óxido Nítrico/administração & dosagem , Doadores de Óxido Nítrico/química , Nociceptividade/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos de Rutênio/administração & dosagem , Compostos de Rutênio/química , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA