Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241988

RESUMO

The aim of the study was to determine the stability and heat resistance of extra premium olive oil. The study material consisted of six extra virgin olive oils (EVOO) obtained from Spain. Four samples were single-strain olive oils: Arbequina, Picual, Manzanilla, and Cornicabra. Two samples were a coupage of Arbequina and Picual varieties: Armonia (70% Arbequina and 30% Picual) and Sensation (70% Picual and 30% Arbequina). Olive oil samples were heated at 170 °C and 200 °C in a pan (thin layer model). In all samples, changes in indexes of lipid nutritional quality (PUFA/SFA, index of atherogenicity, index of thrombogenicity, and hypocholesterolemic/hypercholesterolemic ratio), changes in tocopherol, total polar compounds content, and triacylglycerol polymers were determined. Heating olive oil in a thin layer led to its degradation and depended on the temperature and the type of olive oil. Increasing the temperature from 170 to 200 °C resulted in significantly higher degradation of olive oil. At 200 °C, deterioration of lipid nutritional indices, total tocopherol degradation, and formation of triacylglycerol polymers were observed. A twofold increase in the polar fraction was also observed compared to samples heated at 170 °C. The most stable olive oils were Cornicabra and Picual.


Assuntos
Olea , Tocoferóis , Azeite de Oliva , Óleos de Plantas , Triglicerídeos , Temperatura , Polimerização , Calefação , Avaliação Nutricional , Fenóis/análise , Polímeros
2.
Molecules ; 27(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458659

RESUMO

Polar compounds and polymers are regarded as the most reliable indicators of oil degradation during heating, and it is desirable to find methods to reduce these undesirable changes. The aim of this study was (1) to determine the effect of enrichment with black cumin cold-pressed oil (CP) or essential oil obtained from black cumin cold-pressed oil in an equivalent amount (ES) on limiting the polar compounds and polymers content in blends based on refined rapeseed oil during high-temperature heating in a thin layer; (2) to determine tocochromanol losses and their effect on the change content of the polar compounds and polymers. Four fortified oils were made from refined rapeseed oil and one of the four additives (10% CP, 20% CP, 0.1% ES, and 0.2% ES). All fortified oils and refined rapeseed oil as a control sample were heated at 170 and 200 °C on the pan in a thin layer and evaluated regarding loss of individual tocochromanol homologs by HPLC-FL, polar compounds content, oxidized triacylglycerols (TAG), and polymers content by HPSEC-ELSD. Additionally, the fatty acid profile in nonheated oil was investigated. Tocochromanol analysis showed loss in all the samples. At 170 °C polymers were not detected; no difference was noted for polar compounds and oxidized TAG content; only the 20% CP sample showed a higher level. At 200 °C the 10% CP sample exhibited a significant protective effect with the lowest content of polar compounds, oxidized TAG, and dimers.


Assuntos
Nigella sativa , Temperatura Baixa , Calefação , Óleos de Plantas , Polímeros , Óleo de Brassica napus
3.
Molecules ; 24(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842452

RESUMO

The aim of the study was to analyze the influence of the surface area to volume ratio of pressed and refined rapeseed oils on the changes in tocopherol content and polymerization of triacylglycerols during heating. In the study the pressed and refined rapeseed oil was heated at 170 °C, during 6, 12, and 18 h with three different surface area to volume (s/v) ratios (0.378, 0.189, and 0.126 cm-1). During heating, a decrease in tocopherols and increases in dimers, trimers, and oligomers of triacylglycerols were observed. However, the changes were dependent on the surface area to volume ratio used, type of oil and time of heating. The biggest changes were observed in oil with the biggest s/v ratio (0.378 cm-1), and the lowest when the s/v ratio was 0.126 cm-1. The pressed oil was characterized by faster degradation of tocopherols and slower increase of triacylglycerol polymer levels compared to refined oil.


Assuntos
Temperatura Alta , Polimerização , Óleo de Brassica napus/química , Tocoferóis/química , Triglicerídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA