Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Science ; 376(6594): 724-730, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549430

RESUMO

Rapid eye movement (REM) sleep is associated with the consolidation of emotional memories. Yet, the underlying neocortical circuits and synaptic mechanisms remain unclear. We found that REM sleep is associated with a somatodendritic decoupling in pyramidal neurons of the prefrontal cortex. This decoupling reflects a shift of inhibitory balance between parvalbumin neuron-mediated somatic inhibition and vasoactive intestinal peptide-mediated dendritic disinhibition, mostly driven by neurons from the central medial thalamus. REM-specific optogenetic suppression of dendritic activity led to a loss of danger-versus-safety discrimination during associative learning and a lack of synaptic plasticity, whereas optogenetic release of somatic inhibition resulted in enhanced discrimination and synaptic potentiation. Somatodendritic decoupling during REM sleep promotes opposite synaptic plasticity mechanisms that optimize emotional responses to future behavioral stressors.


Assuntos
Dendritos , Plasticidade Neuronal , Córtex Pré-Frontal , Sono REM , Animais , Dendritos/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Parvalbuminas/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Sono REM/fisiologia , Tálamo/citologia , Tálamo/fisiologia
2.
PLoS Biol ; 20(3): e3001530, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239646

RESUMO

Calcium dynamics into astrocytes influence the activity of nearby neuronal structures. However, because previous reports show that astrocytic calcium signals largely mirror neighboring neuronal activity, current information coding models neglect astrocytes. Using simultaneous two-photon calcium imaging of astrocytes and neurons in the hippocampus of mice navigating a virtual environment, we demonstrate that astrocytic calcium signals encode (i.e., statistically reflect) spatial information that could not be explained by visual cue information. Calcium events carrying spatial information occurred in topographically organized astrocytic subregions. Importantly, astrocytes encoded spatial information that was complementary and synergistic to that carried by neurons, improving spatial position decoding when astrocytic signals were considered alongside neuronal ones. These results suggest that the complementary place dependence of localized astrocytic calcium signals may regulate clusters of nearby synapses, enabling dynamic, context-dependent variations in population coding within brain circuits.


Assuntos
Astrócitos/metabolismo , Região CA1 Hipocampal/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Neurônios/metabolismo , Algoritmos , Animais , Astrócitos/citologia , Região CA1 Hipocampal/citologia , Locomoção/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Neurônios/citologia , Navegação Espacial/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Percepção Visual/fisiologia
3.
Elife ; 92020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33048047

RESUMO

Imaging neuronal activity with high and homogeneous spatial resolution across the field-of-view (FOV) and limited invasiveness in deep brain regions is fundamental for the progress of neuroscience, yet is a major technical challenge. We achieved this goal by correcting optical aberrations in gradient index lens-based ultrathin (≤500 µm) microendoscopes using aspheric microlenses generated through 3D-microprinting. Corrected microendoscopes had extended FOV (eFOV) with homogeneous spatial resolution for two-photon fluorescence imaging and required no modification of the optical set-up. Synthetic calcium imaging data showed that, compared to uncorrected endoscopes, eFOV-microendoscopes led to improved signal-to-noise ratio and more precise evaluation of correlated neuronal activity. We experimentally validated these predictions in awake head-fixed mice. Moreover, using eFOV-microendoscopes we demonstrated cell-specific encoding of behavioral state-dependent information in distributed functional subnetworks in a primary somatosensory thalamic nucleus. eFOV-microendoscopes are, therefore, small-cross-section ready-to-use tools for deep two-photon functional imaging with unprecedentedly high and homogeneous spatial resolution.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Tálamo/diagnóstico por imagem , Animais , Comportamento Animal , Endoscópios , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Neurônios/fisiologia , Tálamo/fisiologia
4.
Curr Biol ; 29(9): 1481-1490.e6, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31031117

RESUMO

Up and down states are among the most prominent features of the thalamo-cortical system during non-rapid eye movement (NREM) sleep and many forms of anesthesia. Cortical interneurons, including parvalbumin (PV) cells, display firing activity during cortical down states, and this GABAergic signaling is associated with prolonged down-state durations. However, what drives PV interneurons to fire during down states remains unclear. We here tested the hypothesis that background thalamic activity may lead to suprathreshold activation of PV cells during down states. To this aim, we performed two-photon guided juxtasomal recordings from PV interneurons in the barrel field of the somatosensory cortex (S1bf) of anesthetized mice, while simultaneously collecting the local field potential (LFP) in S1bf and the multi-unit activity (MUA) in the ventral posteromedial (VPM) thalamic nucleus. We found that activity in the VPM was associated with longer down-state duration in S1bf and that down states displaying PV cell firing were associated with increased VPM activity. Moreover, thalamic inhibition through application of muscimol reduced the fraction of spikes discharged by PV cells during cortical down states. Finally, we inhibited PV interneurons using optogenetics during down states while monitoring cortical LFP under control conditions and after thalamic muscimol injection. We found increased latency of the optogenetically triggered down-to-up transitions upon thalamic pharmacological blockade compared to controls. These findings demonstrate that spontaneous thalamic activity inhibits cortex during down states through the activation of PV interneurons.


Assuntos
Interneurônios/fisiologia , Parvalbuminas/metabolismo , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos
5.
Proc Natl Acad Sci U S A ; 99(20): 13284-9, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12235360

RESUMO

Insights into the pathogenesis of migraine with aura may be gained from a study of human Ca(V)2.1 channels containing mutations linked to familial hemiplegic migraine (FHM). Here, we extend the previous single-channel analysis to human Ca(V)2.1 channels containing mutation V1457L. This mutation increased the channel open probability by shifting its activation to more negative voltages and reduced both the unitary conductance and the density of functional channels in the membrane. To investigate the possibility of changes in Ca(V)2.1 function common to all FHM mutations, we calculated the product of single-channel current and open probability as a measure of Ca(2+) influx through single Ca(V)2.1 channels. All five FHM mutants analyzed showed a single-channel Ca(2+) influx larger than wild type in a broad voltage range around the threshold of activation. We also expressed the FHM mutants in cerebellar granule cells from Ca(V)2.1alpha(1)-/- mice rather than HEK293 cells. The FHM mutations invariably led to a decrease of the maximal Ca(V)2.1 current density in neurons. Current densities were similar to wild type at lower voltages because of the negatively shifted activation of FHM mutants. Our data show that mutational changes of functional channel densities can be different in different cell types, and they uncover two functional effects common to all FHM mutations analyzed: increase of single-channel Ca(2+) influx and decrease of maximal Ca(V)2.1 current density in neurons. We discuss the relevance of these findings for the pathogenesis of migraine with aura.


Assuntos
Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/fisiologia , Cálcio/metabolismo , Enxaqueca com Aura/genética , Animais , Linhagem Celular , Cerebelo/citologia , DNA Complementar/metabolismo , Humanos , Camundongos , Mutação , Neurônios/metabolismo , Técnicas de Patch-Clamp , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA