Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 125: 155339, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237513

RESUMO

BACKGROUND: Salvia miltiorrhiza Bunge (Labiatae) (DS) is a key part of the traditional Chinese medicine, whose roots are used to remove blood stasis, relieve pain, eliminate carbuncle and calm the nerves. Our research team found that the DS extract could significantly reverse LPS-induced lung injury, and five new diterpenoid quinones in DS extract with excellent lung protective activity for the first time. However, the material basis and mechanism of DS on pulmonary fibrosis (PF) needs to be explored in depth. OBJECTIVE: Bleomycin (BLM) was employed to establish the PF model, and Transcriptome and Surface plasmon resonance (SPR) ligand fishing technology were used to explore the material basis and mechanism of DS on PF, and provided theoretical research for clinical treatment of PF. METHODS: DS extract (24.58 or 49.16 mg/kg, i.g.) was administered daily from Day 8 to Day 28, followed by intratracheal BLM drip (5 mg/kg) to induce PF. Data about the influences of DS on PF were collected by transcriptome sequencing technology. Pulmonary ultrasound, airway responsiveness, lung damage, collagen deposition, and the levels of TNF-α, IL-1ß, apoptosis, oxidative stress (OS), immune cells, TGF-ß1, α-SMA, E-Cadherin and Collage Ⅰ were examined. The affinity component (Przewalskin) in DS extract targeted by TGF-ß1 was fished by SPR ligand fishing technology. Furthermore, an in vivo PF mouse model and an in vitro TGF-ß1 induced BEAS-2B cell model were established, to explore the mechanism of Przewalskin on PF from the apoptosis, OS and epithelial mesenchymal transformation pathway. RESULTS: DS extract improved pulmonary ultrasound, reduced lung damage and collagen deposition, downregulated TNF-α, IL-1ß, apoptosis, OS, TGF-ß1, α-SMA, E-Cadherin and Collage Ⅰ, transformed immune cells following Bleomycin challenge. Furthermore, affinity component (Przewalskin) also improved pulmonary ultrasound and airway responsiveness, reduced lung damage and collagen deposition, downregulated TNF-α, IL-1ß, apoptosis, OS in vivo and in vitro. CONCLUSION: Analysis using a mouse model revealed that DS extract and Przewalskin can relieve clinical symptoms of PF, reduce lung injury and improve lung function. Meanwhile, DS extract and Przewalskin can improve BLM-induced PF by inhibition of, OS, apoptosis and collagen deposition might via the TGF-ß1 pathway. This study provides references to identification of novel therapeutic targets, thereby facilitating drug development for PF.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Salvia miltiorrhiza , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Bleomicina , Ligantes , Pulmão/patologia , Colágeno/metabolismo , Estresse Oxidativo , Apoptose , Caderinas/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4046-4059, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802772

RESUMO

The present study aimed to investigate the protective effect and underlying mechanism of Platycladi Semen oil(SP) on Aß_(25-35)-induced brain injury in mice to provide a theoretical basis for the clinical treatment of Alzheimer's disease(AD). Male Kunming(KM) mice were randomly divided into a control group, a model group(brain injection of Aß_(25-35), 200 µmol·L~(-1), 0.15 µL·g~(-1)), a positive drug group(donepezil, 10 mg·kg~(-1)), and low-and high-dose SP groups(0.5 and 1 mL·kg~(-1)). Learning and memory ability, neuronal damage, levels of Aß_(1-42)/Aß_(1-40), p-Tau, related indicators of apoptosis and oxidative stress, and immune cells, and protein and mRNA expression related to the sphingosine kinase 1(SPHK1)/sphingosine-1-phosphate(S1P)/sphingosine-1-phosphate receptor 5(S1PR5) signaling pathway of mice in each group were determined. In addition, compounds in SP were analyzed by gas chromatography-mass spectrometry(GC-MS). The mechanism of SP against AD was investigated by network pharmacology, 16S rDNA gene sequencing for gut microbiota(GM), and molecular docking techniques. The results showed that SP could improve the learning and memory function of Aß_(25-35)-induced mice, reduce hippocampal neuronal damage, decrease the levels of Aß_(1-42)/Aß_(1-40), p-Tau, and indicators related to apoptosis and oxidative stress in the brain, and maintain the homeostasis of immune cells and GM. Network pharmacology and sequencing analysis for GM showed that the therapeutic effect of SP on AD was associated with the sphingolipid signaling pathway. Meanwhile,(Z,Z,Z)-9,12,15-octadecatrienoic acid and(Z,Z)-9,12-octadecadienoic acid, the components with the highest content in SP, showed good binding activity to SPHK1 and S1PR5. Therefore, it is inferred that SP exerts anti-apoptosis and antioxidant effects by regulating GM and inhibiting SPHK1/S1P/S1PR5 pathway, thereby improving brain injury induced by Aß_(25-35) in mice. Moreover,(Z,Z,Z)-9,12,15-octadecatrienoic acid and(Z,Z)-9,12-octadecadienoic acid may be the material basis for the anti-AD effect of SP.


Assuntos
Doença de Alzheimer , Lesões Encefálicas , Microbioma Gastrointestinal , Camundongos , Animais , Masculino , Sêmen/metabolismo , Farmacologia em Rede , Ácido Linoleico , Simulação de Acoplamento Molecular , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética
3.
Phytomedicine ; 101: 154114, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35489325

RESUMO

BACKGROUND: Corallodiscus flabellata B. L. Burtt, a traditional Chinese folk medicine used for amnesia, can significantly improve brain injury; however, its active components and underlying mechanism of action remain unclear. OBJECTIVE: To examine the effects and underlying mechanism of action of Corallodiscus flabellata B. L. Burtt (SDC) extract and isolated isonuomioside A (isA) on Aß25-35-induced brain injury. METHODS: SDC extract (155 mg/kg, i.g.) or IsA (20 mg/kg, i.g.) was administered over a period of 4 weeks, following which brain injury was induced by Aß25-35 infusion (200 µM, 3 µl/20 g, i.c.v.). Network pharmacology research gathered existing data on the effects of SDC on Alzheimer's disease. Learning and memory ability, neuronal damage, and the levels of Aß1-42/Aß1-40, p-Tau, apoptosis, oxidative stress, autophagy, immune cells, NMDAR2B, p-CamK Ⅱ, and PKG were examined. Furthermore, the antagonistic effect of MK-801 (NMDA receptor blocker, 10 µM) in the presence of isA (10 µM) or SDC extract (20 µg/ml) was investigated in Aß25-35 (20 µM, 24 h)-induced PC-12 and N9 cells to evaluate whether the observed effects elicited by isA and SDC extract were mediated via the NMDAR2B/CamK Ⅱ/PKG pathway. RESULTS: IsA and SDC extract improved learning and memory ability, reduced neuronal damage, downregulated Aß1-42/Aß1-40, p-Tau, apoptosis, oxidative stress, and autophagy, transformed immune cells, and increased the expression levels of NMDAR2B, p-CamK Ⅱ, and PKG following Aß25-35 challenge. Moreover, MK-801 blocked the effects of isA and SDC extract on apoptosis, ROS levels, and autophagy in Aß25-35-induced N9 and PC-12 cells, indicating that isA and SDC extract likely exert neuroprotective effects via the NMDAR2B/CamK Ⅱ/PKG pathway. CONCLUSION: IsA and SDC extract ameliorate Aß25-35-induced brain injury by inhibiting apoptosis, oxidative stress, and autophagy, which likely occurs via the NMDAR2B/CamK Ⅱ/PKG pathway. These findings may help to elucidate new therapeutic targets and facilitate the development of drugs for the clinical treatment of AD.


Assuntos
Doença de Alzheimer , Lesões Encefálicas , Fármacos Neuroprotetores , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Apoptose , Autofagia , Maleato de Dizocilpina/efeitos adversos , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Fragmentos de Peptídeos/metabolismo , Extratos Vegetais/uso terapêutico , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA