Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(9): e2303336, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38211556

RESUMO

Photodynamic therapy as a burgeoning and non-invasive theranostic technique has drawn great attention in the field of antibacterial treatment but often encounters undesired phototoxicity of photosensitizers during systemic circulation. Herein, a supramolecular substitution strategy is proposed for phototherapy of drug-resistant bacteria and skin flap repair by using macrocyclic p-sulfonatocalix(4)arene (SC4A) as a host, and two cationic aggregation-induced emission luminogens (AIEgens), namely TPE-QAS and TPE-2QAS, bearing quaternary ammonium group(s) as guests. Through host-guest assembly, the obtained complex exhibits obvious blue fluorescence in the solution due to the restriction of free motion of AIEgens and drastically inhibits efficient type I ROS generation. Then, upon the addition of another guest 4,4'-benzidine dihydrochloride, TPE-QAS can be competitively replaced from the cavity of SC4A to restore its pristine ROS efficiency and photoactivity in aqueous solution. The dissociative TPE-QAS shows a high bacterial binding ability with an efficient treatment for methicillin-resistant Staphylococcus aureus (MRSA) in dark and light irradiation. Meanwhile, it also exhibits an improved survival rate for MRSA-infected skin flap transplantation and largely accelerates the healing process. Thus, such cascaded host-guest assembly is an ideal platform for phototheranostics research.


Assuntos
Calixarenos , Staphylococcus aureus Resistente à Meticilina , Fenóis , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio , Fototerapia , Fotoquimioterapia/métodos
2.
Chin J Nat Med ; 15(6): 427-435, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28629532

RESUMO

Epithelial-mesenchymal transition (EMT) has been implicated in tumor invasion and metastasis and provides novel strategies for cancer therapy. Hypaconitine (HpA), a diester-diterpenoid alkaloid isolated from the root of the Aconitum species, exhibits anti-inflammatory, analgesic, and especially, cardiotoxic activities. Here, we reported the anti-metastatic potentials of HpA in transforming growth factor-ß1 (TGF-ß1)-induced EMT in lung cancer A549 cells. The cytotoxic effect of HpA was determined by MTT assay. A549 cells were treated with TGF-ß1 with or without HpA co-treatment, and the morphological alterations were observed with a microscopy. The expression of E-cadherin, N-cadherin, and NF-κB was determined by both Western blotting and immunofluorescence analyses. The adhesion, migration, and invasion were detected with Matrigel, wound-healing, and transwell assays, respectively. The expression of Snail was determined by Western blotting. The expression of NF-κB p65, IκBα, and p-IκBα in nuclear and cytosolic extracts was assessed by Western blotting. The results showed that low concentration of HpA (<16 µmol·L-1) had no obvious cytotoxicity to A549 cells. Morphologically, TGF-ß1 treatment induced spindle-shaped alteration in the cells. The upregulation of N-cadherin, NF-κB, and Snail and the downregulation of E-cadherin were detected after TGF-ß1 treatment. The adhesion, migration and invasion abilities were also increased by TGF-ß1. Besides, TGF-ß1 induced expression of Snail in a time-dependent manner. Furthermore, TGF-ß1 induced nuclear translocation of NF-κB p65. All these alterations were dramatically inhibited by HpA co-treatment. In addition, the NF-κB inhibitor PDTC showed similar inhibitory effect. In conclusion, these results showed that HpA inhibited TGF-ß1-induced EMT in A549 cells, which was possibly mediated by the inactivation of the NF-κB signaling pathway, providing an evidence for anti-cancer effect of HpA.


Assuntos
Aconitina/análogos & derivados , Antineoplásicos Fitogênicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Células A549 , Aconitina/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Caderinas/análise , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Invasividade Neoplásica , Fator de Crescimento Transformador beta1/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA