Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38362695

RESUMO

AIM AND OBJECTIVE: Zuogui pill (ZGP) is the traditional Chinese medicine for tonifying kidney yin. Clinical and animal studies have shown that ZGP effectively enhances neurologic impairment after ischemic stroke, which may be related to promoting neurite outgrowth. This investigation aimed to prove the pro-neurite outgrowth impact of ZGP and define the underlying molecular pathway in vitro. MATERIALS AND METHODS: The major biochemical components in the ZGP were investigated using UPLC-QTOF-MS. All-trans retinoic acid (ATRA) was employed to stimulate SH-SY5Y cells to develop into mature neurons, followed by oxygen-glucose deprivation and reoxygenation damage (OGD/R). Then the cells were supplemented with different concentrations of ZGP, and cell viability was identified by CCK-8. The neurites' outgrowth abilities were detected by wound healing test, while immunofluorescence staining of ß-III-tubulin was used to label neurites and measure their length. Western blot was employed to discover the changes in protein levels. RESULTS: ZGP improved the cell viability of differentiated SH-SY5Y cells following OGD/R damage, according to the CCK-8 assay. Concurrently, ZGP promoted neurite outgrowth and improved neurite crossing and migration ability. Protein expression analysis showed that ZGP upregulated the expression of GAP43, OPN, p-IGF-1R, mTOR, and p-S6 proteins but downregulated the expression of PTEN protein. Blocking assay with IGF-1R specific inhibitor Linstinib suggested IGF-1R mediated mTOR signaling pathway was involved in the pro-neurite outgrowth effect of ZGP. CONCLUSION: This work illustrated the molecular mechanism underpinning ZGP's action and offered more proof of its ability to promote neurite outgrowth and regeneration following ischemic stroke.

2.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5250-5258, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114114

RESUMO

To explore the effect and mechanism of Zuogui Pills in promoting neural tissue recovery and functional recovery in mice with ischemic stroke. Male C57BL/6J mice were randomly divided into a sham group, a model group, and low-, medium, and high-dose Zuogui Pills groups(3.5, 7, and 14 g·kg~(-1)), with 15 mice in each group. The ischemic stroke model was established using photochemical embolization. Stiker remove and irregular ladder walking behavioral tests were conducted before modeling and on days 7, 14, 21, and 28 after medication. Triphenyl tetrazolium chloride(TTC) staining was performed on day 3 after modeling, and T2-weighted imaging(T2WI) and diffusion-weighted imaging(DWI) were performed on day 28 after medication to evaluate the extent of brain injury. Hematoxylin-eosin(HE) staining was performed to observe the histology of the cerebral cortex. Axonal marker proteins myelin basic protein(MBP), growth-associated protein 43(GAP43), mammalian target of rapamycin(mTOR), and its downstream phosphorylated s6 ribosomal protein(p-S6), as well as mechanism-related proteins osteopontin(OPN) and insulin-like growth factor 1(IGF-1), were detected using immunofluorescence and Western blot. Zuogui Pills had a certain restorative effect on the neural function impairment caused by ischemic stroke in mice. TTC staining showed white infarct foci in the sensory-motor cortex area, and T2WI imaging revealed cystic necrosis in the sensory-motor cortex area. The Zuogui Pills groups showed less brain tissue damage, fewer scars, and more capillaries. The number of neuronal axons in those groups was higher than that in the model group, and neuronal activity was stronger. The expression of GAP43, OPN, IGF-1, and mTOR proteins in the Zuogui Pills groups was higher than that in the model group. In summary, Zuogui Pills can promote the recovery of neural function and axonal growth in mice with ischemic stroke, and its mechanism may be related to the activation of the OPN/IGF-1/mTOR signaling pathway.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Masculino , Recuperação de Função Fisiológica/fisiologia , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Mamíferos/metabolismo
3.
Int J Biol Macromol ; 208: 741-747, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35367472

RESUMO

In contemporary life, plastic, a kind of petroleum carbon source, has been produced and used in varieties of applications. However, the vast consumption of petroleum-based plastic and the burning of agricultural wastes make the environmental problems increasingly severe. Furthermore, a large number of lignocellulosic resources (such as corncob and wheat straw) are often wasted and burned, which will aggravate the environmental damage. In this paper, we use unbleached corncob and wheat straw pulp to fabricate the lignin-containing cellulose bio-composites (LCBs) to reduce non-renewable energy consumption and utilize agricultural wastes. The LCBs were obtained by a direct manufacturing process in benzyltrimethyl ammonium hydroxide (BzMe3NOH) aqueous solution under mild conditions, constituting an entwined composite structure of cellulose micro/nano-fibers. This unique micro/nano-structure provides bio-composites with the outstanding mechanical performance of 96.7 MPa and a high haze of 90.1%. Meanwhile, with the inherent lignin, the LCBs could filter over 81.8% UV-C. As the raw material used is pure natural lignocellulose, the bio-composites prepared have innate environmental friendliness. With exceptional mechanical strength, UV-shielding property, and innate environmental friendliness, the LCBs are possible and potential substitutes for traditional petroleum-based plastic that is easily aging or non-biodegradable.


Assuntos
Lignina , Petróleo , Celulose/química , Lignina/química , Plásticos , Triticum/química , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA