Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 18(6): 4957-4971, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38288709

RESUMO

Vaccine technology is effective in preventing and treating diseases, including cancers and viruses. The efficiency of vaccines can be improved by increasing the dosage and frequency of injections, but it would bring an extra burden to people. Therefore, it is necessary to develop vaccine-boosting techniques with negligible side effects. Herein, we reported a cupping-inspired noninvasive suction therapy that could enhance the efficacy of cancer/SARS-CoV-2 nanovaccines. Negative pressure caused mechanical immunogenic cell death and released endogenous adjuvants. This created a subcutaneous niche that would recruit and activate antigen-presenting cells. Based on this universal central mechanism, suction therapy was successfully applied in a variety of nanovaccine models, which include prophylactic/therapeutic tumor nanovaccine, photothermal therapy induced in situ tumor nanovaccine, and SARS-CoV-2 nanovaccine. As a well-established physical therapy method, suction therapy may usher in an era of noninvasive and high-safety auxiliary strategies when combined with vaccines.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Vacinas , Humanos , Nanovacinas , Sucção , Neoplasias/terapia , Modalidades de Fisioterapia , Imunoterapia
2.
Biomaterials ; 289: 121794, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36113330

RESUMO

As a representative of tumor immunotherapy, tumor vaccine can inhibit tumor growth by activating tumor-specific immune response, which has the advantages of relatively low toxicity and high efficiency, and has attracted much attention in recent years. However, there are still difficulties in how to effectively deliver tumor vaccines in vivo and make them work efficiently. It is a relatively mature method to load tumor specific antigens with suitable carriers to produce tumor vaccines. Here, a generally minimalist construction method of tumor nanovaccine was developed. A high-efficiency tumor nanovaccine (NV) was prepared in one step by a biomineralization-like method, which contained ovalbumin (OVA, model antigen), unmethylated cytosine-phosphate-guanine (CpG, adjuvant) and Mn-NP (carrier and adjuvant). NV not only showed good tumor preventive effect, but also could successfully inhibited tumor development and metastasis when combined with anti-PD-L1, and induced long-term immune memory effect. However, the method of screening tumor specific antigen to construct nanovaccine is cumbersome and tumors are heterogeneous. Therefore, surgically resected tumor tissue is the best source of antigens for preparing tumor vaccines. Next, based on the strong loading ability of the carrier, we designed a personalized tumor nanovaccine (PNV) using the supernatant of tumor abrasive fluid (STAF) as antigen based on the generally minimalist tumor nanovaccine construction strategy. PNV combined with anti-PD-L1 could successfully inhibit post-surgical tumor recurrence and induce strong and durable immune memory effects. This study presents a novel, general, and minimalist strategy to construct high-efficiency personalized nanovaccine, which has a wide range of potential applications in the field of tumor treatment.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Animais , Antígenos de Neoplasias , Citosina , Guanina , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Ovalbumina , Fosfatos
3.
Nano Lett ; 21(18): 7796-7805, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516141

RESUMO

Immunotherapy holds great promise for patients undergoing tumor treatment. However, the clinical effect of immunotherapy is limited because of tumor immunogenicity and its immunosuppressive microenvironment. Herein, the metal-organic framework (MIL-100) loaded with chemotherapeutic agent mitoxantrone (MTO) was combined with photothermal-chemotherapy for enhancing immunogenic cell death. MIL-100 loaded with MTO and hyaluronic acid as nanoparticles (MMH NPs) yielded an NP with two therapeutic properties (photothermal and chemotherapy) with dual imaging modes (photoacoustic and thermal). When MMH NPs were coinjected with an anti-OX40 antibody in colorectal cancer, the highest antitumor efficacy and a robust immune effect were achieved. This work provides a novel combined therapeutic strategy, which will hold great promise in future tumor therapy.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Fototerapia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA