Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(9): 254, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37462834

RESUMO

Spent coffee grounds (SCG) are wastes generated in high amounts worldwide. Their composition makes them a promising feedstock for biotechnological processes. Here we show that the production of the biosurfactant surfactin by submerged culture of a Bacillus subtilis strain growing on SCG is possible, reaching concentrations up to 8.8 mg/L when using SCG at 8.3 g/L in the medium. In addition, we report a synergy between the production of surfactin and the recovery of melanoidins, an added-value compound already present in SCG. More specifically, the concentration of melanoidins in the culture medium increased between 2.1 and 2.5 times thanks to the presence of the B. subtilis in the culture. Furthermore, we have observed a strong interaction between surfactin and melanoidin aggregates through dynamic light scattering measurements, and that both of them can be co-purified with an acid precipitation. We have also characterized the interfacial and antioxidant properties of the cell-free supernatant and surfactin extract, as well as the distribution of the congeners of the biosurfactant. Altogether, this work describes a promising approach to obtain biosurfactants and antioxidant molecules in a single operation, which can be used to design several new formulations of interest for bioremediation, amendment of soils, food and cosmetics.


Assuntos
Antioxidantes , Café , Polímeros , Biotecnologia
2.
J Environ Manage ; 302(Pt B): 114075, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800772

RESUMO

SCG are a bio-waste generated in great amount worldwide which are attractive as soil amendment for their high content of organic matter and nutritive elements. Nevertheless, several studies have shown that soil application of untreated SCG has detrimental agronomic and environmental effects due to their high degradability and content of noxious compounds (phenols, caffeine, and tannins). However, SCG can be valorised, in the frame of circular economy, by extraction of energy and valuable products (carbohydrates, proteins, bio-oil, bio-diesel) and generation of solid by products (biochar, hydrochar, compost) that can be utilized as soil fertilizers and amendments. Therefore, the aim of this work was the characterization of different solid SCG by-products (as second-generation products) and their assessment as effective organic amendments. The novelty of this study is that for the first time 8 different by-products derived from the same SCG were characterized and comparatively evaluated for their impact on the C and N cycles of soil. SCG was collected and treated to generate 8 different SCG by-products (biochars produced at 270 and 400 °C, hydrochars produced at 160 and 200 °C, vermicompost, defatted SCG and biochars produced from defatted SCG at 270 and 400 °C). SCG and derived by-products were characterized for SEM micromorphology, pH and EC values, and C, N, H, O, volatile matter, fixed C, LOI, carbonates, water soluble C and N, NO3- and NH4+ content. SCG and SCG by-products assessment as organic amendments was performed with an incubation experiment. The residues were added (2.5%) to a moist Mediterranean agricultural soil and the amended soil samples were placed in mesocosms and incubated at 20 °C for 30 days. During incubation, CO2 and N2O emissions were measured every 6 h by means of a gas chromatography automated system for GHG sampling and measurement. The percentage of added C remaining (CR) in the soil was calculated by fitting the cumulative respiration of amended soil to a two-pool model. After 2, 7 and 30 days of incubation, the control and amended soils were sampled and analyzed for their content of extractable organic C, N, NO3- and NH4+ and microbial biomass C and N. Results showed that SCG by-products presented a great variability in their properties. SCG and hydrochars presented higher contents in volatile matter and water soluble C and N, and low content of fixed C, while biochars showed an opposite behaviour. SEM images confirmed the different characteristics of the SCG by-products: the biochar presented a porous structure, honeycomb-like form, due to the loss of the more soluble compounds, while the SCG and hydrochars' pores were filled with amorphous carbonaceous materials. Consequently, soil addition of SCG by-products showed a distinct impact on C and N cycle and microbial biomass content. Addition of SCG and hydrochars generated the highest cumulative CO2-C emissions (2103-2300 µg g-1), the lower amount of CR (86.8-88.6%), increased the soil extractable organic C and microbial biomass C and N and caused N immobilization. On the other hand, the addition of biochars generated lower CO2-C emissions (542-1060 µg g-1), higher amounts of CR (96. 3-99.9%) and lower amounts of extractable compounds and microbial biomass C and N, generating also N immobilization, but to a lesser extent. The addition of vermicompost generated 723 µg g-1 of CO2-C and 98% of CR remaining. However, this by-product did not generate N immobilization being able to act as N fertilizer. None of the residues generated N2O emissions. The different properties of the SCG by-products and their impact on C and N cycle indicated that they can be effectively applied to soil to exert different agronomical and environmental functions.


Assuntos
Compostagem , Solo , Agricultura , Carvão Vegetal , Café , Fertilizantes
3.
Waste Manag ; 120: 322-329, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33340815

RESUMO

Spent coffee grounds (SCG) hydrochar is a second-generation solid waste obtained by hydrothermal carbonization (HTC). Two washed hydrochars from SCG (175 and 185 °C; 12 MPa of N2) were tested as organic amendments of an agricultural soil (Cambic Calcisol), at doses of 1 and 2.5%, in an in vitro assay using Lactuca sativa as a crop plant. The washed hydrochars differ from the SCG in organic carbon (OC) (56 vs 47%), C/N ratio (29 vs 24), polyphenols (186 vs 77 mg GAE/g), pH (4.1 vs 5.8), assimilable P (186 vs 1274 ppm) and K (32 vs 2475 ppm). The particles of washed hydrochars have a lower size and a more porous structure than SCG particles. Higher HTC temperatures generate greater differences with SCG. The effects on the soil of washed hydrochars are similar to SCG, regarding OC, total N, C/N ratio, available K and P contents. The influence of SCG and washed hydrochars on lettuces is also similar: both give rise to plant growth inhibition and increase in the contents of Ca, Mg, Cu, Fe and Mn. Nevertheless, washed hydrochars seem to be more effective in the mobilization of elements in the soil than SCG, which could be attributed to their higher content of polyphenols. For example: Ca (139 mg/100 g with SCG and 160 mg/100 g with hydrochar) and Fe (0.742 mg/100 g with SCG and 1.45 mg/100 g with hydrochar). Therefore, it can be concluded that SCG hydrochars could be used as organic amendments with similar limitations and advantages to SCG.


Assuntos
Café , Solo , Agricultura , Carbono , Características da Família
4.
J Agric Food Chem ; 67(9): 2500-2509, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30724071

RESUMO

Coffee is one of the most consumed beverages around the world, and as a consequence, spent coffee grounds are a massively produced residue that is causing environmental problems. Reusing them is a major focus of interest presently. We extracted mannooligosaccharides (MOS) from spent coffee grounds and submitted them to an in vitro fermentation with human feces. Results obtained suggest that MOS are able to exert a prebiotic effect on gut microbiota by stimulating the growth of some beneficial genera, such as Barnesiella, Odoribacter, Coprococcus, Butyricicoccus, Intestinimonas, Pseudoflavonifractor, and Veillonella. Moreover, short-chain fatty acids (SCFA) production also increased in a dose-dependent manner. However, we observed that 5-(hydroxymethyl)furfural, furfural, and polyphenols (which are either produced or released from the spent coffee grounds matrix during hydrolysis) could have an inhibitory effect on other beneficial genera, such as Faecalibacterium, Ruminococcus, Blautia, Butyricimonas, Dialister, Collinsella, and Anaerostipes, which could negatively affect the prebiotic activity of MOS.


Assuntos
Coffea , Microbioma Gastrointestinal/efeitos dos fármacos , Manose/farmacologia , Oligossacarídeos/farmacologia , Extratos Vegetais/farmacologia , Sementes/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Café/química , Relação Dose-Resposta a Droga , Ácidos Graxos Voláteis/biossíntese , Fezes/microbiologia , Fermentação , Humanos , Extratos Vegetais/química , Prebióticos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA