Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 299: 115685, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36067840

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mayaro fever is a neglected tropical disease. The region of the most significant circulation of the Mayaro virus (MAYV) is the Amazon rainforest, situated in remote areas that are difficult to access and where medicine is scarce. Thus, the regional population uses plants as an alternative for the treatment of various diseases. Fridericia chica is an endemic plant of tropical regions used in traditional medicine to treat fever, malaise, inflammation, and infectious diseases such as hepatitis B. However, its antiviral activity is poorly understood. AIM OF THE STUDY: This study aimed to investigate the anti-MAYV activity of the hydroethanolic extract of the leaves of Fridericia chica (HEFc) in mammalian cells and its possible mechanism of action. MATERIALS AND METHODS: The antiviral activity of HEFc was studied using Vero cell lines against MAYV. The cytotoxicity and antiviral activity of the extract were evaluated by the 3-(4, 5- dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. The overall antiviral activity was confirmed by the plaque forming units (PFU) method. Then, the effects of HEFc on MAYV multiplication kinetics, virus adsorption, penetration, and post-penetration, and its virucidal activity were determined in Vero cells using standard experimental procedures. RESULTS: HEFc exerted a effect against viral infection in Vero cells at a non-cytotoxic concentration, and no virion was detected in the supernatant in a dose-dependent and selective manner. HEFc inhibited MAYV in the early and late stages of the viral multiplication cycle. The extract showed significant virucidal activity at low concentrations and did not affect adsorption or viral internalization stages. In addition, HEFc reduced virions at all post-infection times investigated. CONCLUSIONS: HEFc has good antiviral activity against MAYV, acting directly on the viral particles. This plant extract possesses an excellent and promising potential for developing effective herbal antiviral drugs.


Assuntos
Alphavirus , Bignoniaceae , Animais , Antivirais/farmacologia , Brometos/farmacologia , Chlorocebus aethiops , Mamíferos , Extratos Vegetais/farmacologia , Células Vero
2.
Probiotics Antimicrob Proteins ; 14(3): 486-500, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34255281

RESUMO

Mucositis is one of the most strenuous side effects caused by chemotherapy drugs, such as 5-fluorouracil (5-FU), during the treatment of several types of cancers. The disease is so prevalent and aggressive that many patients cannot resist such symptoms. However, despite its frequency and clinical significance, there is no effective treatment to prevent or treat mucositis. Thus, the use of probiotics as an adjuvant for the treatment has gained prominence. In the present study, we evaluated the effectiveness of oral administration of the Antarctic strain of Rhodotorula mucilaginosa UFMGCB 18,377 as an alternative to minimize side effects of 5-FU-induced mucositis in mice. Body weight, food consumption, stool consistency, and presence of blood in the feces were assessed daily in mice orally treated or not with the yeast and submitted or not to experimental mucositis. Blood, bones, and intestinal tissues and fluid were used to determine intestinal permeability and immunological, microbiological, and histopathological parameters. Treatment with R. mucilaginosa UFMGCB 18,377 was able to decrease clinical signs of the disease, such as reduction of food intake and body weight loss, and also decreased the number of intestinal enterobacteria and intestinal length shortening. Additionally, treatment was able to decrease the levels of MPO and EPO activities and inflammatory infiltrates, as well as the histopathological lesions characteristic of mucositis in the jejunum and ileum. Results of the present study showed that the oral administration of R. mucilaginosa UFMGCB 18,377 protected mice against mucositis induced by 5-FU.


Assuntos
Mucosite , Animais , Regiões Antárticas , Fluoruracila/efeitos adversos , Humanos , Mucosa Intestinal , Camundongos , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/prevenção & controle , Rhodotorula
3.
Parasitol Res ; 114(12): 4625-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26346453

RESUMO

The present study aimed to investigate the in vitro antileishmanial activity of strychnobiflavone flavonoid against Leishmania infantum, as well as its mechanism of action, and evaluate the ex vivo biodistribution profile of the flavonoid in naive BALB/c mice. The antileishmanial activity (IC50 value) of strychnobiflavone against stationary promastigote and amastigote-like stages of the parasites was of 5.4 and 18.9 µM, respectively; with a 50% cytotoxic concentration (CC50) value of 125.0 µM on murine macrophages, resulting in selectivity index (SI) of 23.2 and 6.6, respectively. Amphotericin B, used as a positive control, presented SI values of 7.6 and 3.3 for promastigote and amastigote-like stages of L. infantum, respectively. The strychnobiflavone was also effective in reducing in significant levels the percentage of infected macrophages, as well as the number of amastigotes per macrophage, after the treatment of infected macrophages using the flavonoid. By using different fluorescent probes, we investigated the bioenergetics metabolism of L. infantum promastigotes and demonstrated that the flavonoid caused the depolarization of the mitochondrial membrane potential, without affecting the production of reactive oxygen species. In addition, using SYTOX(®) green as a fluorescent probe, the strychnobiflavone demonstrated no interference in plasma membrane permeability. For the ex vivo biodistribution assays, the flavonoid was labeled with technetium-(99m) and studied in a mouse model by intraperitoneal route. After a single dose administration, the scintigraphic images demonstrated a highest uptake by the liver and spleen of the animals within 60 min, resulting in low concentrations after 24 h. The present study therefore demonstrated, for the first time, the antileishmanial activity of the strychnobiflavone against L. infantum, and suggests that the mitochondria of the parasites may be the possible target organelle. The preferential distribution of this compound into the liver and spleen of the animals could warrant its employ in the treatment of visceral leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Flavonoides/administração & dosagem , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Strychnos/química , Animais , Antiprotozoários/isolamento & purificação , Permeabilidade da Membrana Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Flavonoides/isolamento & purificação , Humanos , Leishmania infantum/fisiologia , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual
4.
Br J Nutr ; 112(10): 1601-10, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25322775

RESUMO

Dietary glutamine (Gln) supplementation improves intestinal function in several stressful conditions. Therefore, in the present study, the effects of dietary Gln supplementation on the core body temperature (T core), bacterial translocation (BT) and intestinal permeability of mice subjected to acute heat stress were evaluated. Male Swiss mice (4 weeks old) were implanted with an abdominal temperature sensor and randomly assigned to one of the following groups fed isoenergetic and isoproteic diets for 7 d before the experimental trials: group fed the standard AIN-93G diet and exposed to a high ambient temperature (39°C) for 2 h (H-NS); group fed the AIN-93G diet supplemented with l-Gln and exposed to a high temperature (H-Gln); group fed the standard AIN-93G diet and not exposed to a high temperature (control, C-NS). Mice were orally administered diethylenetriaminepentaacetic acid radiolabelled with technetium (99mTc) for the assessment of intestinal permeability or 99mTc-Escherichia coli for the assessment of BT. Heat exposure increased T core (approximately 41°C during the experimental trial), intestinal permeability and BT to the blood and liver (3 h after the experimental trial) in mice from the H-NS group relative to those from the C-NS group. Dietary Gln supplementation attenuated hyperthermia and prevented the increases in intestinal permeability and BT induced by heat exposure. No correlations were observed between the improvements in gastrointestinal function and the attenuation of hyperthermia by Gln. Our findings indicate that dietary Gln supplementation preserved the integrity of the intestinal barrier and reduced the severity of hyperthermia during heat exposure. The findings also indicate that these Gln-mediated effects occurred through independent mechanisms.


Assuntos
Translocação Bacteriana/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Suplementos Nutricionais , Febre/prevenção & controle , Glutamina/uso terapêutico , Temperatura Alta , Mucosa Intestinal/efeitos dos fármacos , Animais , Dieta , Escherichia coli , Glutamina/farmacologia , Golpe de Calor/prevenção & controle , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Fígado/microbiologia , Camundongos , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA