Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 123: 155197, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952409

RESUMO

BACKGROUND: Zika virus (ZIKV) is an emerging arbovirus that in recent years has been associated with cases of severe neurological disorders, such as microcephaly in newborns and Guillain-Barré syndrome in adults. As there is no vaccine or treatment, the search for new therapeutic targets is of great relevance. In this sense, plants are extremely rich sources for the discovery of new bioactive compounds and the species Phyllanthus brasiliensis (native to the Amazon region) remains unexplored. PURPOSE: To investigate the potential antiviral activity of compounds isolated from P. brasiliensis leaves against ZIKV infection. METHODS: In vitro antiviral assays were performed with justicidin B (a lignan) and four glycosylated lignans (tuberculatin, phyllanthostatin A, 5-O-ß-d-glucopyranosyljusticidin B, and cleistanthin B) against ZIKV in Vero cells. MTT colorimetric assay was used to assess cell viability and plaque forming unit assay to quantify viral load. In addition, for justicidin B, tests were performed to investigate the mechanism of action (virucidal, adsorption, internalization, post-infection). RESULTS: The isolated compounds showed potent anti-ZIKV activities and high selectivity indexes. Moreover, justicidin B, tuberculatin, and phyllanthostatin A completely reduced the viral load in at least one of the concentrations evaluated. Among them, justicidin B stood out as the main active, and further investigation revealed that justicidin B exerts its antiviral effect during post-infection stages, resulting in a remarkable 99.9 % reduction in viral load when treatment was initiated 24 h after infection. CONCLUSION: Our findings suggest that justicidin B inhibits endosomal internalization and acidification, effectively interrupting the viral multiplication cycle. Therefore, the findings shed light on the promising potential of isolated compounds isolated from P. brasiliensis, especially justicidin B, which could contribute to the drug development and treatments for Zika virus infections.


Assuntos
Dioxolanos , Glicosídeos , Lignanas , Naftalenos , Phyllanthus , Infecção por Zika virus , Zika virus , Recém-Nascido , Animais , Humanos , Chlorocebus aethiops , Infecção por Zika virus/tratamento farmacológico , Células Vero , Antivirais/farmacologia , Antivirais/uso terapêutico , Lignanas/farmacologia , Lignanas/uso terapêutico , Replicação Viral
2.
Phytochem Anal ; 34(7): 869-883, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37403427

RESUMO

INTRODUCTION: This study describes the molecular profile and the potential antiviral activity of extracts from Phyllanthus brasiliensis, a plant widely found in the Brazilian Amazon. The research aims to shed light on the potential use of this species as a natural antiviral agent. METHODS: The extracts were analysed using liquid chromatography-mass spectrometry (LC-MS) system, a potent analytical technique to discover drug candidates. In the meantime, in vitro antiviral assays were performed against Mayaro, Oropouche, Chikungunya, and Zika viruses. In addition, the antiviral activity of annotated compounds was predicted by in silico methods. RESULTS: Overall, 44 compounds were annotated in this study. The results revealed that P. brasiliensis has a high content of fatty acids, flavones, flavan-3-ols, and lignans. Furthermore, in vitro assays revealed potent antiviral activity against different arboviruses, especially lignan-rich extracts against Zika virus (ZIKV), as follows: methanolic extract from bark (MEB) [effective concentration for 50% of the cells (EC50 ) = 0.80 µg/mL, selectivity index (SI) = 377.59], methanolic extract from the leaf (MEL) (EC50 = 0.84 µg/mL, SI = 297.62), and hydroalcoholic extract from the leaf (HEL) (EC50 = 1.36 µg/mL, SI = 735.29). These results were supported by interesting in silico prediction, where tuberculatin (a lignan) showed a high antiviral activity score. CONCLUSIONS: Phyllanthus brasiliensis extracts contain metabolites that could be a new kick-off point for the discovery of candidates for antiviral drug development, with lignans becoming a promising trend for further virology research.


Assuntos
Lignanas , Phyllanthus , Infecção por Zika virus , Zika virus , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Phyllanthus/química , Antivirais/farmacologia , Lignanas/farmacologia , Lignanas/química
3.
J Ethnopharmacol ; 311: 116436, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003399

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mayaro virus (MAYV) is an arbovirus endemic to the Amazon region, which comprises the states of the North and Midwest region of Brazil and encompasses the largest tropical forest in the world, the Amazon Forest. The confirmation of its potential transmission by Aedes aegypti and recent cases in Brazil, mainly in large centers in the northern region, led to the classification of Mayaro fever as an emerging disease. Traditional medicine is commonly used to treat various diseases, mainly by local riverside populations. Some species of the genus Maytenus, which have similar morphologies, are popularly used to treat infections and inflammations. In this context, our research group has studied and confirmed the antiviral activity of several plant-derived compounds. However, several species of this same genus have not been studied and therefore deserve attention. AIM OF THE STUDY: This study aimed to demonstrate the effects of ethyl acetate extracts of leaves (LAE) and branches (TAE) of Maytenus quadrangulata against MAYV. MATERIALS AND METHODS: Mammalian cells (Vero cells) were used to evaluate the cytotoxicity of the extracts. After cell infection by MAYV and the treatment with the extracts, we evaluated the selectivity index (SI), the virucidal effect, viral adsorption and internalization, and the effect on viral gene expression. The antiviral action was confirmed by quantifying the viral genome using RT-qPCR and by analyzing the effect on virus yield in infected cells. The treatment was performed based on the effective concentration protective for 50% of the infected cells (EC50). RESULTS: The leaves (LAE; EC50 12.0 µg/mL) and branches (TAE; EC50 101.0 µg/mL) extracts showed significative selectivity against the virus, with SI values of 79.21 and 9.91, respectively, which were considered safe. Phytochemical analysis revealed that the antiviral action was associated with the presence of catechins, mainly in LAE. This extract was chosen for the subsequent studies since it reduced the viral cytopathic effect and virus production, even at high viral loads [MOI (multiplicity of infection) 1 and 5]. The effects of LAE resulted in a marked reduction in viral gene expression. The viral title was drastically reduced when LAE was added to the virus before infection or during replication stages, reducing virus production up to 5-log units compared to infected and untreated cells. CONCLUSION: Through kinetic replication, MAYV was not detected in Vero cells treated with LAE throughout the viral cycle. The virucidal effect of LAE inactivates the viral particle and can intercept the virus at the end of the cycle when it gains the extracellular environment. Therefore, LAE is a promising source of antiviral agents.


Assuntos
Alphavirus , Catequina , Maytenus , Animais , Chlorocebus aethiops , Antivirais/farmacologia , Antivirais/química , Catequina/farmacologia , Células Vero , Alphavirus/genética , Mamíferos
4.
Antiviral Res ; 194: 105168, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34437912

RESUMO

Infection caused by Mayaro virus (MAYV) is responsible for causing acute nonspecific fever, in which the majority of patients develop incapacitating and persistent arthritis/arthralgia. Mayaro fever is a neglected and underreported disease without treatment or vaccine, which has gained attention in recent years after the competence of Aedes aegypti to transmit MAYV was observed in the laboratory, coupled with the fact that cases are being increasingly reported outside of endemic forest areas, calling attention to the potential of an urban cycle arising in the near future. Thus, to mitigate the lack of information about the pathological aspects of MAYV, we previously described the involvement of oxidative stress in MAYV infection in cultured cells and in a non-lethal mouse model. Additionally, we showed that silymarin, a natural compound, attenuated MAYV-induced oxidative stress and inhibited MAYV replication in cells. The antioxidant and anti-MAYV effects prompted us to determine whether silymarin could also reduce oxidative stress and MAYV replication after infection in an immunocompetent animal model. We show that infected mice exhibited reduced weight gain, hepatomegaly, splenomegaly, anaemia, thrombocytopenia, leukopenia, increased liver transaminases, increased pro-inflammatory cytokines and liver inflammation, increased oxidative damage biomarkers, and reduced antioxidant enzyme activity. However, in animals infected and treated with silymarin, all these parameters were reversed or significantly improved, and the detection of viral load in the liver, spleen, brain, thigh muscle, and footpad was significantly reduced. This work reinforces the potent hepatoprotective, antioxidant, anti-inflammatory, and antiviral effects of silymarin against MAYV infection, demonstrating its potential against Mayaro fever disease.


Assuntos
Infecções por Alphavirus/tratamento farmacológico , Alphavirus/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Antivirais/farmacologia , Silimarina/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia/métodos
5.
Nat Prod Res ; 35(16): 2804-2809, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31554433

RESUMO

Dengue virus (DENV) is the most prevalent mosquito-borne viral pathogen and made the disease a major health concern worldwide. However, specific antiviral drugs against this arbovirose or vaccines are not yet available for treatment or prevention. Thus, here we aimed to study the antiviral activity of hydroethanolic extract, fraction ethyl acetate and subfractions of the leaves of Bauhinia holophylla (Fabaceae:Cercideae), a native plant of the Brazilian Cerrado, against DENV-2 by methylthiazolyldiphenyl-tetrazolium bromide (MTT) method in mammalian cells culture. As results, the hydroethanolic extract showed the most potent effect, with an inhibitory concentration (IC50) of 3.2 µg mL-1 and selectivity index (SI) of 27.6, approximately 16-times higher anti-DENV-2 activity than of the ribavirin (IC50 52.8 µg mL-1). Our results showed in this study appointed that B. holophylla has a promising anti-dengue activity, which was associated mainly with the presence of flavonoids.


Assuntos
Antivirais , Bauhinia , Vírus da Dengue/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antivirais/isolamento & purificação , Antivirais/farmacologia , Bauhinia/química , Células Cultivadas , Dengue/tratamento farmacológico , Humanos , Folhas de Planta/química , Sorogrupo
6.
J Ethnopharmacol ; 266: 113423, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33007390

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pristimerin is a triterpenoid considered the main component of Salacia crassifolia extracts. This terpene has shown promising antitumor, anti-inflammatory, and antimicrobial effects. Likewise, S. crassifolia has been used in traditional medicine to treat cancer and as an antimicrobial and anti-inflammatory agent. AIM OF THE STUDY: This study aimed to evaluate the antibacterial activity of the hexane extract of Salacia crassifolia roots (HER) and its isolate, pristimerin, against pathogenic bacteria. MATERIALS AND METHODS: First, we evaluated the spectrum of action of HER and pristimerin by the determination of the minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Subsequently, we analyzed the time-kill curve of these plant-derived compounds against Staphylococcus aureus. Then, we examined their mode of action by three different assays: the crystal violet methodology, the release of intracellular material, and transmission electron microscopy methods (TEM). Finally, we evaluated the effect of HER and pristimerin on the pre-formed biofilm of S. aureus by the crystal violet assay, the synergistic effect by the checkerboard method, the cytotoxicity against Vero cells, and the in silico activity using the online software PASS. RESULTS: HER and pristimerin presented a narrow spectrum of action against Gram-positive bacteria (MIC 0.195-25 µg/mL), and their primary mode of action is the alteration of membrane permeability of S. aureus. Our results show that the compounds disrupted the pre-formed biofilm of S. aureus in a dose-dependent manner. Furthermore, HER and pristimerin presented a significant synergic effect after the combination with well-known antibiotics, which was associated with the ability of these phytomedicines to change membrane permeability. Regarding the cytotoxic effect, the selective index (SI) of HER ranged from 0.37 to 11.86, and the SI of pristimerin varied from 0.24 to 30.87, according to the bacteria tested. CONCLUSIONS: Overall, HER and pristimerin showed a promising antibacterial effect in vitro through the alteration of membrane permeability of S. aureus.


Assuntos
Antibacterianos/farmacologia , Salacia/química , Staphylococcus aureus/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Antibacterianos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Chlorocebus aethiops , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Triterpenos Pentacíclicos , Raízes de Plantas , Infecções Estafilocócicas/tratamento farmacológico , Triterpenos/isolamento & purificação , Células Vero
7.
Acta Trop ; 211: 105613, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32621935

RESUMO

Zika virus (ZIKV) epidemic and its association with severe neurological syndromes have raised worldwide concern. Despite the great clinical relevance of this infection, no vaccine or specific treatment is available and the search for antiviral compounds against ZIKV is extremely necessary. Several natural compounds, such as silymarin, exhibit antioxidant, hepatoprotective, and antiviral properties; however, the antiviral potential of this compound remains partially investigated. Therefore, the objective of this study was to evaluate in vitro the antiviral activity of silymarin against ZIKV infection. Global antiviral activity, dose-dependent, plaque reduction, and time-of-drug-addition assays were used to determine the anti-ZIKV activity of silymarin. Additionally, to start characterizing the mechanisms of action we determined whether silymarin could have a virucidal effect and inhibit viral adsorption and penetration stages. Regarding its global antiviral activity, silymarin showed significant inhibition of ZIKV infection, protecting cells infected with EC50 equal to 34.17µg/mL, with a selectivity index greater than 17 and 4x greater than that of the positive control (ribavirin). Its greatest efficiency was achieved at 125µg/mL, whose cell viability did not differ from the control without infection and treatment. Furthermore, treatment with silymarin reduced viral load by up to two logs (> 90%) concerning viral control, when evaluating virucidal activity and the precocious times of infection. Thus, our results set to show the promising anti-ZIKV activity of silymarin, which does not seem to have a single inhibition mechanism, acting at different times of infection, and still has the advantage of silymarin be a phytotherapy already available on the market.


Assuntos
Antivirais/farmacologia , Silimarina/farmacologia , Zika virus/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Relação Dose-Resposta a Droga , Humanos , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA