Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 907: 174314, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34245745

RESUMO

L-arginine supplementation increases nitric oxide (NO) formation and bioavailability in hypertension. We tested the possibility that many effects of L-arginine are mediated by increased formation of NO and enhanced nitrite, nitrate and nitrosylated species concentrations, thus stimulating the enterosalivary cycle of nitrate. Those effects could be prevented by antiseptic mouthwash. We examined how the derangement of the enterosalivary cycle of nitrate affects the improvement of endothelial dysfunction (assessed with isolated aortic ring preparation), the antihypertensive (assessed by tail-cuff blood pressure measurement) and the antioxidant effects (assessed with the fluorescent dye DHE) of L-arginine in two-kidney, one-clip hypertension model in rats by using chlorhexidine to decrease the number of oral bacteria and to decrease nitrate reductase activity assessed from the tongue (by ozone-based chemiluminiscence assay). Nitrite, nitrate and nitrosylated species concentrations were assessed (ozone-based chemiluminiscence). Chlorhexidine mouthwash reduced the number of oral bacteria and tended to decrease the nitrate reductase activity from the tongue. Antiseptic mouthwash blunted the improvement of the endothelial dysfunction and the antihypertensive effects of L-arginine, impaired L-arginine-induced increases in plasma nitrite and nitrosylated species concentrations, and blunted L-arginine-induced increases in aortic nitrate concentrations and vascular antioxidant effects. Our results show for the first time that the vascular and antihypertensive effects of L-arginine are prevented by antiseptic mouthwash. These findings show an important new mechanism that should be taken into consideration to explain how the use of antibacterial mouth rinse may affect arterial blood pressure and the risk of developing cardiovascular and other diseases.


Assuntos
Anti-Hipertensivos , Animais , Clorexidina , Nitritos , Ratos
2.
Redox Biol ; 38: 101769, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33126056

RESUMO

Nitrate and nitrite supplement deficient endogenous nitric oxide (NO) formation. While these anions may generate NO, recent studies have shown that circulating nitrite levels do not necessarily correlate with the antihypertensive effect of oral nitrite administration and that formation of nitrosylated species (RXNO) in the stomach is critically involved in this effect. This study examined the possibility that RXNO formed in the stomach after oral nitrite administration promotes target protein nitrosylation in the vasculature, inhibits vasoconstriction and the hypertensive responses to angiotensin II. Our results show that oral nitrite treatment enhances circulating RXNO concentrations (measured by ozone-based chemiluminescence methods), increases aortic protein kinase C (PKC) nitrosylation (measured by resin-assisted capture SNO-RAC method), and reduces both angiotensin II-induced vasoconstriction (isolated aortic ring preparation) and hypertensive (in vivo invasive blood pressure measurements) effects implicating PKC nitrosylation as a key mechanism for the responses to oral nitrite. Treatment of rats with the nitrosylating compound S-nitrosoglutathione (GSNO) resulted in the same effects described for oral nitrite. Moreover, partial depletion of thiols with buthionine sulfoximine prevented PKC nitrosylation and the blood pressure effects of oral nitrite. Further confirming a role for PKC nitrosylation, preincubation of aortas with GSNO attenuated the responses to both angiotensin II and to a direct PKC activator, and this effect was attenuated by ascorbate (reverses GSNO-induced nitrosylation). GSNO-induced nitrosylation also inhibited the increases in Ca2+ mobilization in angiotensin II-stimulated HEK293T cells expressing angiotensin type 1 receptor. Together, these results are consistent with the idea that PKC nitrosylation in the vasculature may underlie oral nitrite treatment-induced reduction in the vascular and hypertensive responses to angiotensin II.


Assuntos
Angiotensina II , Nitritos , Angiotensina II/farmacologia , Animais , Anti-Hipertensivos , Células HEK293 , Humanos , Óxido Nítrico , Proteína Quinase C , Ratos
3.
Free Radic Biol Med ; 115: 10-17, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29138017

RESUMO

Propofol anesthesia is usually accompanied by hypotension. Studies have shown that the hypotensive effects of propofol increase in patients treated with angiotensin-converting enzyme inhibitors (ACEi). Given that both propofol and ACEi affect nitric oxide (NO) signaling, the present study tested the hypothesis that ACEi treatment induces pronounced hypotensive responses to propofol by increasing NO bioavailability. In this study we evaluated 65 patients, divided into three groups: hypertensive patients chronically treated with ACEi (HT-ACEi; n = 21), hypertensive patients treated with other antihypertensive drugs instead of ACEi, such as angiotensin II receptor blockers, ß-blockers or diuretics (HT; n = 21) and healthy normotensive subjects (NT; n = 23). Venous blood samples were collected at baseline and after 10min of anesthesia with propofol 2mg/kg administrated intravenously by bolus injection. Hemodynamic parameters were recorded at each blood sample collection. Nitrite levels were determined by using an ozone-based chemiluminescence assay, while NOx (nitrites+nitrates) levels were measured by using the Griess reaction. Additionally, experimental approaches were used to validate our clinical findings. Higher decreases in blood pressure after propofol anesthesia were observed in HT-ACEi group as compared with those found in NT and HT groups. Consistently, rats treated with the ACEi enalapril showed more intense hypotensive responses to propofol. The hypotensive effects of propofol were associated with increased NO production in both clinical and experimental approaches. Enhanced increases in nitrite levels after propofol anesthesia were observed in HT-ACEi patients compared with NT and HT groups. Accordingly, rats treated with enalapril showed increased vascular NO formation after propofol anesthesia compared with rats receiving vehicle. Our data show that ACEi enhance the hypotensive responses to propofol anesthesia and increase nitrite concentrations. These findings suggest that increased NO bioavailability may account for the enhanced hypotensive effects of propofol in ACEi-treated patients.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Hipertensão/tratamento farmacológico , Hipotensão/metabolismo , Óxido Nítrico/metabolismo , Propofol/uso terapêutico , Antagonistas Adrenérgicos beta/uso terapêutico , Anestesia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Animais , Diuréticos/uso terapêutico , Sinergismo Farmacológico , Quimioterapia Combinada , Enalapril/uso terapêutico , Hemodinâmica , Humanos , Hipotensão/etiologia , Masculino , Propofol/efeitos adversos , Ratos , Ratos Wistar , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA