Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Mycol ; 60(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35869980

RESUMO

This study explores the growth of bacterial, fungal, and interkingdom biofilms under aerobiosis or microaerobic conditions and the effect of ozonated sunflower oil on these biofilms. Candida species and Streptococcus mutans were used to study this interaction due to their importance in oral health and disease as these microorganisms display a synergistic relationship that manifests in the onset of caries and tooth decay. Biofilms were developed in a 96-well microtiter plate at 37ºC for 24 h, under aerobiosis or microaerobic conditions, and treated with ozonated oil for 5 to 120 min. All the microorganisms formed biofilms in both oxygenation conditions. Scanning electron microscopy was used to visualize biofilm morphology. Rodent experiments were performed to verify the oil-related toxicity and its efficacy in oral candidiasis. The growth of all Candida species was increased when co-cultured with S. mutans, whilst the growth of bacterium was greater only when co-cultured with C. krusei and C. orthopsilosis under aerobiosis and microaerobic conditions, respectively. Regardless of the oxygenation condition, ozonated oil significantly reduced the viability of all the tested biofilms and infected mice, showing remarkable microbicidal activity as corroborated with confocal microscopy and minimal toxicity. Thus, ozonated oil therapy can be explored as a strategy to control diseases associated with these biofilms especially in the oral cavity. LAY SUMMARY: We demonstrated that ozonated sunflower oil is effective at killing the biofilms formed by Candida species, by the bacterium Streptococcus mutans, or by both micoorganisms that can interact in the oral cavity, making it a potential therapeutic option for the treatment of these infections.


Assuntos
Candida , Streptococcus mutans , Animais , Biofilmes , Candida albicans , Camundongos , Óleo de Girassol
2.
J Equine Vet Sci ; 98: 103305, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33663716

RESUMO

The goal of the present study was to characterize the antimicrobial action of different ozone (O3) presentations against Pythium insidiosum isolated from horses. In experiment 1, P. insidiosum was treated with ozonated distilled water, ozonated sunflower oils with distinct peroxide indexes or O3 gas (72 µg O3 mL-1). In experiment 2, samples were exposed one or three times to oxygen (O2) or O3 gas (72 µg O3 mL-1; 30 min/day). In experiment 3, P. insidiosum was treated with different concentrations of O3 gas (Ø, 32, 52, or 72 µg O3 mL-1) for three days (30 min/day). In experiment 4, samples were exposed to O2 or O3 gas (72 µg O3 mL-1) for 05, 15, or 30 minutes during three days. Posteriorly, all samples were cultured for two weeks, and the pathogen growth area was measured until D14. Samples with absence of growth on D14 were recultured to assess the germicidal or germistatic action of the treatment. In experiment 1, only ozonized sunflower oil with a high peroxide index had germicidal action against the pathogen. In experiment 2, samples exposed three times to O3 gas were inactivated. In experiment 3, the O3 therapy had germicidal action against P. insidiosum independently of the gas concentration (P > .1). In experiment 4, O3 treatments ≥15 minutes suppressed the pathogen development, whereas samples exposed to O3 gas for 5 minutes had progressive growth (P < .01). In conclusion, ozonated sunflower oil with a high peroxide index and multiple exposures to O3 gas mixtures were able to inactivate P. insidiosum isolated from horses.


Assuntos
Anti-Infecciosos , Doenças dos Cavalos , Ozônio , Pitiose , Pythium , Animais , Doenças dos Cavalos/tratamento farmacológico , Cavalos , Ozônio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA