Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36365157

RESUMO

Leishmania is a trypanosomatid that causes leishmaniasis. It is transmitted to vertebrate hosts during the blood meal of phlebotomine sandflies. The clinical manifestations of the disease are associated with several factors, such as the Leishmania species, virulence and pathogenicity, the host-parasite relationship, and the host's immune system. Although its causative agents have been known and studied for decades, there have been few advances in the chemotherapy of leishmaniasis. The urgency of more selective and less toxic alternatives for the treatment of leishmaniasis leads to research focused on the study of new pharmaceuticals, improvement of existing drugs, and new routes of drug administration. Natural resources of plant origin are promising sources of bioactive substances, and the use of ethnopharmacology and folk medicine leads to interest in studying new medications from phytocomplexes. However, the intrinsic low water solubility of plant derivatives is an obstacle to developing a therapeutic product. Nanotechnology could help overcome these obstacles by improving the availability of common substances in water. To contribute to this scenario, this article provides a review of nanocarriers developed for delivering plant-extracted compounds to treat clinical forms of leishmaniasis and critically analyzing them and pointing out the future perspectives for their application.

2.
Pharmaceutics ; 14(11)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36365212

RESUMO

Doxorubicin (DOX) is an antineoplastic agent clinically employed for treating breast cancer patients. Despite its effectiveness, its inherent adverse toxic side effects often limit its clinical application. To overcome these drawbacks, lipid-polymer hybrid nanoparticles (LPNP) arise as promising nanoplatforms that combine the advantages of both liposomes and polymeric nanoparticles into a single delivery system. Alpha-tocopherol succinate (TS) is a derivative of vitamin E that shows potent anticancer mechanisms, and it is an interesting approach as adjuvant. In this study, we designed a pH-sensitive PLGA-polymer-core/TPGS-lipid-shell hybrid nanoparticle, loaded with DOX and TS (LPNP_TS-DOX). Nanoparticles were physicochemically and morphologically characterized. Cytotoxicity studies, migration assay, and cellular uptake were performed in 4T1, MCF-7, and MDA-MB-231 cell lines. Antitumor activity in vivo was evaluated in 4T1 breast tumor-bearing mice. In vitro studies showed a significant reduction in cell viability, cell migration, and an increase in cellular uptake for the 4T1 cell line compared to free DOX. In vivo antitumor activity showed that LPNP-TS-DOX was more effective in controlling tumor growth than other treatments. The high cellular internalization and the pH-triggered payload release of DOX lead to the increased accumulation of the drugs in the tumor area, along with the synergic combination with TS, culminating in greater antitumor efficacy. These data support LPNP-TS-DOX as a promising drug delivery system for breast cancer treatment.

3.
Biomed Pharmacother ; 134: 111109, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341050

RESUMO

Cutaneous leishmaniasis (CL) is a neglected tropical skin disease caused by the protozoan genus Leishmania. The treatment is restricted to a handful number of drugs that exhibit toxic effects, limited efficacy, and drug resistance. Additionally, developing an effective topical treatment is still an enormous unmet medical challenge. Natural oils, e.g. the oleoresin from P. emarginatus fruits (SO), contain various bioactive molecules, especially terpenoid compounds such as diterpenes and sesquiterpenes. However, its use in topical formulations can be impaired due to the natural barrier of the skin for low water solubility compounds. Nanoemulsions (NE) are drug delivery systems able to increase penetration of lipophilic compounds throughout the skin, improving their topical effect. In this context, we propose the use of SO-containing NE (SO-NE) for CL treatment. The SO-NE was produced by a low energy method and presented suitable physicochemical characteristic: average diameter and polydispersity index lower than 180 nm and 0.2, respectively. Leishmania (Leishmania) amazonensis-infected BALB/c mice were given topical doses of SO or SO-NE. The topical use of a combination of SO-NE and intraperitoneal meglumine antimoniate reduced lesion size by 41 % and tissue regeneration was proven by histopathological analyses. In addition, a reduction in the parasitic load and decreased in the level of IFN-γ in the lesion may be associated, as well as a lower level of the cytokine IL-10 may be associated with a less intense inflammatory process. The present study suggests that SO-NE in combination meglumine antimoniate represents a promising alternative for the topical treatment of CL caused by L. (L.) amazonensis.


Assuntos
Fabaceae , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Tripanossomicidas/farmacologia , Administração Tópica , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Composição de Medicamentos , Quimioterapia Combinada , Emulsões , Fabaceae/química , Feminino , Interações Hospedeiro-Parasita , Leishmania mexicana/crescimento & desenvolvimento , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Antimoniato de Meglumina/farmacologia , Mesocricetus , Camundongos Endogâmicos BALB C , Nanopartículas , Carga Parasitária , Extratos Vegetais/isolamento & purificação , Pele/parasitologia , Pele/patologia , Tripanossomicidas/isolamento & purificação
4.
Biomed Pharmacother ; 84: 252-257, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27664949

RESUMO

Nowadays cancer is one of the most common causes of deaths worldwide. Conventional antitumor agents still present various problems related to specificity for tumor cells often leading to therapeutic failure. Nanoscale particles are considered potential alternative to direct access of drugs into tumor cells, therefore increasing the drug accumulation and performance. The aim of this study was to evaluate the antitumor activity of doxorubicin (DOX)-loaded nanostructured lipid carriers (NLC) versus liposomes against a breast cancer animal experimental model. NLC-DOX and liposomes-DOX were successfully prepared and characterized. Tumor-bearing mice were divided into five groups (blank-NLC, blank-liposome, DOX, NLC-DOX, liposome-DOX). Each animal received by the tail vein four doses of antitumoral drugs (total dose, 16mg/kg), every 3 days. Antitumor efficacy was assessed by measuring 1) tumor volume, calculating the inhibitory ratio (TV-IR, see after) and 2) acquiring scintigraphic images of the tumor using doxorubicin radiolabeled with technetium-99m as an imaging tumor probe. Liposome-DOX and free DOX did not showed differences in the tumor mean volume, whereas NLC-DOX proved to be the best treatments in controlling the tumor growth. NLC-DOX showed an inhibition ration (TV-IR) of 73.5% while free DOX and liposome-DOX decreased TV-RI of 48.8% and 68.0%, respectively. Tumor was clearly visualized in controls, DOX, and liposome-DOX groups. Yet, regarding the NLC-DOX group, tumor was barely identified by the image, indicating antitumor efficacy. Moreover, both NLC and liposomes proved to be able to delay the occurrence of lung metastasis. In conclusion, results of this study indicated that NLC-DOX might be an alternative strategy to achieve an efficient antitumor activity.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/análogos & derivados , Lipídeos/química , Nanopartículas , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/metabolismo , Composição de Medicamentos , Feminino , Injeções Intravenosas , Lipossomos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Fatores de Tempo , Carga Tumoral
5.
Eur J Dermatol ; 21(5): 722-30, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21737376

RESUMO

Previous studies demonstrated that proteinases from latex of C. candamarcensis act as mitogens on fibroblast and epithelial cells and a subsequent report showed their protective, angiogenic and wound healing effects on gastric ulcers. In this study, we present evidence of skin healing activity by the group of proteinases known as P1G10. By using a hairless mouse model, we compared the healing effect following topical application of various concentrations of P1G10. The data confirm that healing actions take place between 0.1 and 1%, without adverse local irritation or systemic toxicological action after a prolonged period of use. The wound healing effect is unaltered when P1G10 is previously inhibited with iodoacetamide. The low permeation of the hydrosoluble formulation Polawax(®) supports the maintenance of the drug at the site of application. These results extend the healing properties of these groups of enzymes in situations of dermatological trauma and open the way to future clinical applications.


Assuntos
Cisteína Endopeptidases/farmacologia , Glicoproteínas/farmacologia , Látex/química , Fitoterapia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Animais , Peso Corporal/efeitos dos fármacos , Carica/enzimologia , Cisteína Endopeptidases/uso terapêutico , Dextranos , Eletroforese em Gel de Poliacrilamida , Feminino , Géis , Glicoproteínas/uso terapêutico , Masculino , Camundongos , Camundongos Pelados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA