Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684272

RESUMO

In Thai folklore wisdom, shallot (Allium ascalonicum L.) was applied as a traditional herbal medicine for hair growth promotion with no scientific evidence. Androgenetic alopecia (AGA) is a progressive hair loss caused by multiple factors, including androgen hormones, inflammation, and oxidative stress. Conventional medicines (finasteride, dutasteride, corticosteroids, and minoxidil) have been used with limited therapeutic efficacy and unpleasant side effects. In this study, we aimed to give the first estimation of bioactive compounds in shallot extract and evaluate the hair growth-promoting activities regarding anti-inflammatory and gene expression modulation involving androgen, Wnt/ß-catenin, sonic hedgehog, and angiogenesis pathways. The results reveal that phenolic compounds (quercetin, rosmarinic, and p-coumaric acids) are the major constituents of the methanolic shallot extract. Compared with the lipopolysaccharide-stimulated control group (2.68 ± 0.13 µM), nitric oxide production was remarkably diminished by shallot extract (0.55 ± 0.06 µM). Shallot extract improves hair growth promotion activity, as reflected by the downregulation of the androgen gene expression (SRD5A1 and SRD5A2) and the upregulation of the genes associated with Wnt/ß-catenin (CTNNB1), sonic hedgehog (SHH, SMO, and GIL1), and angiogenesis (VEGF) pathways. These findings disclose the new insights of shallot extract on hair growth promotions. Shallot extract could be further developed as nutraceutical, nutricosmetic, and cosmeceutical preparations for AGA treatment.

2.
J Food Sci Technol ; 59(7): 2830-2841, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35734137

RESUMO

The multimycotoxin analysis of aflatoxins (AFs), zearalenone (ZEA), ochratoxin A (OTA), enniatins (ENNs) and beauvericin (BEA) was performed in 85 samples of medicinal herbs dietary supplements. The samples were classified in 64 samples of one herbal ingredient and 21 mixed samples. The extraction was performed by QuEChERS method and the determination by liquid chromatography coupled to ion-trap tandem mass spectrometry (LC-MS/MS-IT). Then, the risk characterization to mycotoxins through the consumption of medicinal herbs dietary supplements was assessed. The results showed that ZEA, OTA, ENNs and BEA showed in the samples with incidences between 1 and 34%, being ENNB the most detected mycotoxin. Mycotoxins contents ranged from LOQ to 3850.5 µg/kg while the mean of positives samples were 65.5 µg/kg (ENNA), 82.7 µg/kg (ENNA1), 88.7 µg/kg (ENNB), 324.9 µg/kg (ENNB1), 137.9 µg/kg (BEA) and 1340.11 µg/kg (ZEA), respectively. OTA was detected in one herbal mix tablet for insomnia at concentration of 799 µg/kg. In herbal drugs the European Pharmacopoeia Commission has implemented limits of 2 µg/kg for AFB1 and 4 µg/kg for total AFs. In the present study AFs have not been detected in the analyzed medicinal herbs dietary supplements. The Estimated Daily Intakes (EDIs) values were calculated using a deterministic method, considering two exposure scenarios (lower bound (LB) and upper bound (UB)). The values obtained were in general far below the Tolerable Daily Intakes (TDIs) established. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-021-05306-y.

3.
Adv Food Nutr Res ; 92: 1-33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32402442

RESUMO

Underutilized marine resources (e.g., algae, fish, and shellfish processing by-products), as sustainable alternatives to livestock protein and interesting sources of bioactive compounds, have attracted the attention of the researchers. Aquatic products processing industries are growing globally and producing huge amounts of by-products that often discarded as waste. However, recent studies pointed out that marine waste contains several valuable components including high-quality proteins, lipids, minerals, vitamins, enzymes, and bioactive compounds that can be used against cancer and some cardiovascular disorders. Besides, previously conducted studies on algae have shown the presence of some unique biologically active compounds and valuable proteins. Hence, this chapter points out recent advances in this area of research and discusses the importance of aquaculture and fish processing by-products as alternative sources of proteins and bioactive compounds.


Assuntos
Aquicultura , Peixes , Abastecimento de Alimentos , Animais , Suplementos Nutricionais , Produtos Pesqueiros , Humanos , Nutrientes
4.
Plant Foods Hum Nutr ; 75(3): 362-368, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32388807

RESUMO

Medicinal plants are often consumed as infusions with boiled water. Scarce information is available in the literature about the migration of mycotoxins into the resulting beverage and/or the effects of the infusion procedure on the final mycotoxin contents. The aim of the present study was to investigate the impact of the infusion process on mycotoxin contents during medicinal plant preparation. For this purpose, the contents of aflatoxins (AFs) [aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2)], zearalenone (ZEA), enniatins (ENNs) [enniatin B (ENNB), enniatin B1 (ENNB1), enniatin A (ENNA), enniatin A1 (ENNA1)] and beauvericin (BEA) were analyzed in 224 samples of medicinal plants and in their resulting beverages. The quick, easy, cheap, effective, rugged and safe extraction method (QuEChERS) was applied to the medicinal plants while the dispersive liquid-liquid microextraction procedure (DLLME) was applied to their infusions, and the mycotoxins were determined by liquid chromatography coupled to ion trap tandem mass spectrometry (LC-MS/MS-IT). The results revealed that ZEA, ENNB, ENNB1, AFB2, AFG1 and AFG2 were detected in the beverages with incidences of ≤6% and at concentrations from less than the limit of quantification (LOQ) to 82.2 µg/L. Mycotoxins reduction ranged from 74 to 100% after the infusion process. The risk assessment revealed that the estimated daily intakes (EDIs) obtained for ZEA, ENNB and ENNB1 were far below the tolerable daily intakes (TDIs) established.


Assuntos
Micotoxinas/análise , Plantas Medicinais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Contaminação de Alimentos/análise , Medição de Risco , Espectrometria de Massas em Tandem
5.
Mar Drugs ; 17(12)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817754

RESUMO

The activities linked to the fishing sector generate substantial quantities of by-products, which are often discarded or used as low-value ingredients in animal feed. However, these marine by-products are a prominent potential good source of bioactive compounds, with important functional properties that can be isolated or up-concentrated, giving them an added value in higher end markets, as for instance nutraceuticals and cosmetics. This valorization of fish by-products has been boosted by the increasing awareness of consumers regarding the relationship between diet and health, demanding new fish products with enhanced nutritional and functional properties. To obtain fish by-product-derived biocompounds with good, functional and acceptable organoleptic properties, the selection of appropriate extraction methods for each bioactive ingredient is of the outmost importance. In this regard, over the last years, innovative alternative technologies of intensification, such as ultrasound-assisted extraction (UAE) and supercritical fluid extraction (SFE), have become an alternative to the conventional methods in the isolation of valuable compounds from fish and shellfish by-products. Innovative green technologies present great advantages to traditional methods, preserving and even enhancing the quality and the extraction efficiency, as well as minimizing functional properties' losses of the bioactive compounds extracted from marine by-products. Besides their biological activities, bioactive compounds obtained by innovative alternative technologies can enhance several technological properties of food matrices, enabling their use as ingredients in novel foods. This review is focusing on analyzing the principles and the use of UAE and SFE as emerging technologies to valorize seafoods and their by-products.


Assuntos
Produtos Biológicos/isolamento & purificação , Produtos Pesqueiros , Química Verde , Animais , Cromatografia com Fluido Supercrítico , Cosméticos/química , Cosméticos/provisão & distribuição , Suplementos Nutricionais/provisão & distribuição , Humanos , Alimentos Marinhos , Ultrassom
6.
J Nat Prod ; 82(2): 403-406, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30688071

RESUMO

The aim of the present work was to study the occurrence of mycotoxins [aflatoxins (1-4), 3-acetyldeoxyniavlenol (5), 15-acetyldeoxynivalenol (6), nivalenol (7), HT-2 (8), T-2 (9), ochratoxin A (10), zearalenone (11), enniatin A (12), enniatin A1 (13), enniatin B (14), enniatin B1 (15), and beauvericin (16)] present in potable products derived from herbal teas. Analysis was carried out by liquid chromatography coupled to ion-trap tandem mass spectrometry (LC-MS/MS-IT) after a dispersive liquid-liquid microextraction procedure (DLLME) was conducted. The DLLME method was applied to 52 commercial samples of chamomile, chamomile with anise, chamomile with honey, linden, pennyroyal mint, thyme, valerian, and horsetail beverages. The results obtained showed that the following mycotoxins were detected in the samples: 2 (19.1 to 134.7 µg/L), 3 (below the limit of quantification), and 4 (2.2 to 13.5 µg/L). Also, 6 was detected in one sample at 112.5 µg/L, and 14 was detected only in two samples, although at very low concentration levels. Pennyroyal mint and thyme showed the highest concentration levels of mycotoxins. A risk assessment, however, showed negative results regarding the consumption of herbal tea beverages and the presence of mycotoxins.


Assuntos
Micotoxinas/análise , Chás de Ervas/análise , Bebidas/análise , Cromatografia Líquida , Suplementos Nutricionais , Microextração em Fase Líquida , Micotoxinas/toxicidade , Medição de Risco , Espectrometria de Massas em Tandem
7.
J Agric Food Chem ; 65(47): 10282-10289, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29068686

RESUMO

The aim of the present study was to develop a multimycotoxin liquid chromatography tandem mass spectrometry (LC-MS/MS) method with a dispersive liquid-liquid microextraction procedure (DLLME) for the analysis of AFs, 3aDON, 15aDON, NIV, HT-2, T-2, ZEA, OTA, ENNs, and BEA in tea beverages and to evaluate their mycotoxin contents. The proposed method was characterized in terms of linearity, limits of detection (LODs), limits of quantification (LOQs), recoveries, repeatability (intraday precision), reproducibility (interday precision), and matrix effects to check suitability. The results show LODs in the range of 0.05-10 µg/L, LOQs in the range of 0.2-33 µg/L, and recoveries in the range of 65-127% (RSD < 20%). The method developed in this study was applied to 44 commercial samples of black tea, red tea, green tea, and green mint tea. The results show that, of the analyzed mycotoxins, AFB2, AFG2, 15aDON, AFG1, and ENB were detected in the samples. AFB2 (14.4-32.2 µg/L) and 15aDON (60.5-61 µg/L) presented the highest levels. Green mint tea contained the highest concentration of mycotoxins. The risk assessment study shows that the population is not much exposed to mycotoxins through the consumption of tea beverages.


Assuntos
Micotoxinas/química , Micotoxinas/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Chá/química , Contaminação de Alimentos/análise , Limite de Detecção , Microextração em Fase Líquida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA