Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Transl Med ; 13(613): eabe7104, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586830

RESUMO

Huntington's disease (HD) is a hereditary neurodegenerative disorder of the basal ganglia for which disease-modifying treatments are not yet available. Although gene-silencing therapies are currently being tested, further molecular mechanisms must be explored to identify druggable targets for HD. Cytoplasmic polyadenylation element binding proteins 1 to 4 (CPEB1 to CPEB4) are RNA binding proteins that repress or activate translation of CPE-containing transcripts by shortening or elongating their poly(A) tail. Here, we found increased CPEB1 and decreased CPEB4 protein in the striatum of patients and mouse models with HD. This correlated with a reprogramming of polyadenylation in 17.3% of the transcriptome, markedly affecting neurodegeneration-associated genes including PSEN1, MAPT, SNCA, LRRK2, PINK1, DJ1, SOD1, TARDBP, FUS, and HTT and suggesting a new molecular mechanism in neurodegenerative disease etiology. We found decreased protein content of top deadenylated transcripts, including striatal atrophy­linked genes not previously related to HD, such as KTN1 and the easily druggable SLC19A3 (the ThTr2 thiamine transporter). Mutations in SLC19A3 cause biotin-thiamine­responsive basal ganglia disease (BTBGD), a striatal disorder that can be treated with a combination of biotin and thiamine. Similar to patients with BTBGD, patients with HD demonstrated decreased thiamine in the cerebrospinal fluid. Furthermore, patients and mice with HD showed decreased striatal concentrations of thiamine pyrophosphate (TPP), the metabolically active form of thiamine. High-dose biotin and thiamine treatment prevented TPP deficiency in HD mice and attenuated the radiological, neuropathological, and motor HD-like phenotypes, revealing an easily implementable therapy that might benefit patients with HD.


Assuntos
Doença de Huntington , Poliadenilação , Fatores de Transcrição/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Humanos , Doença de Huntington/genética , Doença de Huntington/terapia , Proteínas de Membrana Transportadoras , Transcriptoma
2.
J Alzheimers Dis ; 68(3): 1287-1307, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30909235

RESUMO

BACKGROUND: Frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions (FTLD-TDP) may appear as sporadic (sFTLD-TDP) or linked to mutations in various genes including expansions of the non-coding region of C9ORF72 (c9FTLD). OBJECTIVE: Analysis of differential mRNA and protein expression in the frontal cortex in c9FLTD and evaluation with previous observations in frontal cortex in sFTLD-TDP and amyotrophic lateral sclerosis with TDP-43 inclusions. METHODS: Microarray hybridization and mass spectrometry-based quantitative proteomics followed by RT-qPCR, gel electrophoresis, and western blotting in frontal cortex area 8 in 19 c9FTLD cases and 14 age- and gender-matched controls. RESULTS: Microarray hybridization distinguish altered gene transcription related to DNA recombination, RNA splicing regulation, RNA polymerase transcription, myelin synthesis, calcium regulation, and ubiquitin-proteasome system in c9FTLD; proteomics performed in the same tissue samples pinpoints abnormal protein expression involving apoptosis, inflammation, metabolism of amino acids, metabolism of carbohydrates, metabolism of membrane lipid derivatives, microtubule dynamics, morphology of mitochondria, neuritogenesis, neurotransmission, phagocytosis, receptor-mediated endocytosis, synthesis of reactive oxygen species, and calcium signaling in c9FTLD. CONCLUSION: Transcriptomics and proteomics, as well as bioinformatics processing of derived data, reveal similarly altered pathways in the frontal cortex in c9FTLD, but different RNAs and proteins are identified by these methods. Combined non-targeted '-omics' is a valuable approach to deciphering altered molecular pathways in FTLD provided that observations are approached with caution when assessing human postmortem brain samples.


Assuntos
Proteína C9orf72/genética , Lobo Frontal/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Western Blotting , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/genética , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Análise Serial de Proteínas , Proteômica
3.
J Gerontol A Biol Sci Med Sci ; 73(6): 703-710, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28958038

RESUMO

Fatty acids are key components in the structural diversity of lipids and play a strategic role in the functional properties of lipids which determine the structural and functional integrity of neural cell membranes, the generation of lipid signaling mediators, and the chemical reactivity of acyl chains. The present study analyzes the profile of lipid fatty acid composition of membranes of human frontal cortex area 8 in individuals ranging from 40 to 90 years old. Different components involved in polyunsaturated fatty acid biosynthesis pathways, as well as adaptive defense mechanisms involved in the lipid-mediated modulation of inflammation, are also assessed. Our results show that the lipid profile in human frontal cortex is basically preserved through the adult life span to decay at advanced ages, which is accompanied by an adaptive proactive anti-inflammatory response possibly geared to ensuring cell survival and function.


Assuntos
Envelhecimento/metabolismo , Ácidos Graxos/metabolismo , Lobo Frontal/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Cadáver , Cromatografia Gasosa , Humanos , Inflamação/metabolismo , Longevidade , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase
4.
J Alzheimers Dis ; 54(3): 903-912, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27567873

RESUMO

Previous reports have demonstrated that the combination of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) botanical extracts, which are the components of an already approved cannabis-based medicine, reduce the Alzheimer-like phenotype of AßPP/PS1 transgenic mice when chronically administered during the early symptomatic stage. Here, we provide evidence that such natural cannabinoids are still effective in reducing memory impairment in AßPP/PS1 mice at advanced stages of the disease but are not effective in modifying the Aß processing or in reducing the glial reactivity associated with aberrant Aß deposition as occurs when administered at early stages of the disease. The present study also demonstrates that natural cannabinoids do not affect cognitive impairment associated with healthy aging in wild-type mice. The positive effects induced by Δ9-THC and CBD in aged AßPP/PS1 mice are associated with reduced GluR2/3 and increased levels of GABA-A Rα1 in cannabinoid-treated animals when compared with animals treated with vehicle alone.


Assuntos
Demência/tratamento farmacológico , Demência/metabolismo , Modelos Animais de Doenças , Maconha Medicinal/uso terapêutico , Animais , Demência/patologia , Humanos , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Receptores de GABA-A/metabolismo , Resultado do Tratamento
5.
Hum Mol Genet ; 25(12): 2417-2436, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27056979

RESUMO

Fatal familial insomnia is a rare disease caused by a D178N mutation in combination with methionine (Met) at codon 129 in the mutated allele of PRNP (D178N-129M haplotype). FFI is manifested by sleep disturbances with insomnia, autonomic disorders and spontaneous and evoked myoclonus, among other symptoms. This study describes new neuropathological and biochemical observations in a series of eight patients with FFI. The mediodorsal and anterior nuclei of the thalamus have severe neuronal loss and marked astrocytic gliosis in every case, whereas the entorhinal cortex is variably affected. Spongiform degeneration only occurs in the entorhinal cortex. Synaptic and fine granular proteinase K digestion (PrPres) immunoreactivity is found in the entorhinal cortex but not in the thalamus. Interleukin 6, interleukin 10 receptor alpha subunit, colony stimulating factor 3 receptor and toll-like receptor 7 mRNA expression increases in the thalamus in FFI. PrPc levels are significantly decreased in the thalamus, entorhinal cortex and cerebellum in FFI. This is accompanied by a particular PrPc and PrPres band profile. Altered PrP solubility consistent with significantly reduced PrP levels in the cytoplasmic fraction and increased PrP levels in the insoluble fraction are identified in FFI cases. Amyloid-like deposits are only seen in the entorhinal cortex. The RT-QuIC assay reveals that all the FFI samples of the entorhinal cortex are positive, whereas the thalamus is positive only in three cases and the cerebellum in two cases. The present findings unveil particular neuropathological and neuroinflammatory profiles in FFI and novel characteristics of natural prion protein in FFI, altered PrPres and Scrapie PrP (abnormal and pathogenic PrP) patterns and region-dependent putative capacity of PrP seeding.


Assuntos
Insônia Familiar Fatal/genética , Subunidade alfa de Receptor de Interleucina-10/genética , Interleucina-6/genética , Doenças Priônicas/genética , Proteínas Priônicas/genética , Receptores de Fator Estimulador de Colônias/genética , Receptor 7 Toll-Like/genética , Astrócitos/metabolismo , Astrócitos/patologia , Córtex Entorrinal/metabolismo , Córtex Entorrinal/fisiopatologia , Feminino , Gliose/genética , Gliose/fisiopatologia , Humanos , Insônia Familiar Fatal/fisiopatologia , Masculino , Neurônios/metabolismo , Neurônios/patologia , Doenças Priônicas/fisiopatologia , Tálamo/metabolismo , Tálamo/fisiopatologia
6.
Neuromolecular Med ; 16(4): 669-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24980941

RESUMO

The implication of lipid peroxidation in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) derive from high abundance of peroxidation-prone polyunsaturated fatty acids in central nervous system and its relatively low antioxidant content. In the present work, we evaluated the effect of dietary changes aimed to modify fatty acid tissular composition in survival, disease onset, protein, and DNA oxidative modifications in the hSODG93A transgenic mice, a model of this motor neuron disease. Both survival and clinical evolution is dependent on dietary fatty acid unsaturation and gender, with high unsaturated diet, leading to loss of the disease-sparing effect of feminine gender. This was associated with significant increases in protein carbonyl and glycoxidative modifications as well as non-nuclear 8-oxo-dG, a marker of mitochondrial DNA oxidation. Comparison of these data with γH2AX immunostaining, a marker of DNA damage response, suggests that the highly unsaturated diet-blunted mitochondrial-nuclear free radical dependent crosstalk, since increased 8-oxo-dG was not correlated with increased DNA damage response. Paradoxically, the highly unsaturated diet led to lower peroxidizability but higher anti-inflammatory indexes. To sum up, our results demonstrate that high polyunsaturated fatty acid content in diets may accelerate the disease in this model. Further, these results reinforce the need for adequately defining gender as a relevant factor in ALS models, as well as to use structurally characterized markers for oxidative damage assessment in neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Gorduras na Dieta/efeitos adversos , Gorduras Insaturadas/efeitos adversos , Peroxidação de Lipídeos , Caracteres Sexuais , 8-Hidroxi-2'-Desoxiguanosina , Animais , Biomarcadores , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , DNA Mitocondrial/efeitos dos fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análise , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Gorduras Insaturadas/administração & dosagem , Gorduras Insaturadas/farmacologia , Ácidos Graxos Insaturados/administração & dosagem , Ácidos Graxos Insaturados/efeitos adversos , Ácidos Graxos Insaturados/farmacologia , Feminino , Radicais Livres , Glicosilação/efeitos dos fármacos , Histonas/análise , Inflamação , Masculino , Camundongos , Camundongos Transgênicos , Degeneração Neural , Estresse Oxidativo/efeitos dos fármacos , Mutação Puntual , Carbonilação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Superóxido Dismutase/genética , Superóxido Dismutase-1
7.
J Am Soc Mass Spectrom ; 22(2): 329-38, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21472592

RESUMO

Molecular mass images of tissues will be biased if differences in the physicochemical properties of the microenvironment affect the intensity of the spectra. To address this issue, we have performed-by means of MALDI-TOF mass spectrometry-imaging on slices and lipidomic analysis in extracts of frontal cortex, both from the same postmortem tissue samples of human brain. An external calibration was used to achieve a mass accuracy of 10 ppm (1σ) in the spectra of the extracts, although the final assignment was based on a comparison with previously reported species. The spectra recorded directly from tissue slices (imaging) show excellent s/n ratios, almost comparable to those obtained from the extracts. In addition, they retain the information about the anatomical distribution of the molecular species present in autopsied frozen tissue. Further comparison between the spectra from lipid extracts devoid of proteins and those recorded directly from the tissue unambiguously show that the differences in lipid composition between gray and white matter observed in the mass images are not an artifact due to microenvironmental influences of each anatomical area on the signal intensity, but real variations in the lipid composition.


Assuntos
Lobo Frontal/química , Glicerofosfatos/análise , Imagem Molecular/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Lobo Frontal/metabolismo , Glicerofosfatos/química , Glicerofosfatos/metabolismo , Histocitoquímica , Humanos , Especificidade de Órgãos , Análise de Componente Principal
8.
J Alzheimers Dis ; 19(3): 1069-80, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20157260

RESUMO

The present study was aimed to investigate neuropathological changes in AbetaPP/PS1 transgenic mice (Tg), as a model of Alzheimer's disease, subjected to supplementary iron administration in a critical postnatal period, in order to reveal the interaction of genetic and environmental risk factors in the pathogenesis of the disease. Twelve Tg and 10 wild-type (Wt) littermates were administered iron between the 12th and 14th post-natal days (TgFe, WtFe); 11 Tg and 15 Wt received vehicle (sorbitol 5%) alone in the same period (TgSb, WtSb). Mice were killed at the age of six months and processed for morphological and biochemical studies. No modifications in amyloid-beta burden were seen in iron-treated and non-iron-treated AbetaPP/PS1 mice. No differences in microglial reactions were observed when comparing the four groups of mice. Yet increased astrocytosis, as revealed by densitometry of GFAP-immunoreactive astrocytes, and increased expression levels of GFAP, as revealed by gel electrophoresis and western blotting, were found in iron-treated mice (both Tg and Wt) when compared with TgSb and WtSb. This was accompanied by significant changes in brain fatty acid composition in AbetaPP/PS1 mice that led to a lower membrane peroxidizability index and to reduced protein oxidative damage, as revealed by reduced percentages of the oxidative stress markers: glutamic semialdehyde, aminoadipic semialdehyde, Nepsilon-carboxymethyl-lysine, Nepsilon-carboxyethyl-lysine, and Nepsilon-malondialdehyde-lysine. These findings demonstrate that transient dietary iron supplementation during the neonatal period is associated with cellular and metabolic imprinting in the brain in adult life, but it does not interfere with the appearance of amyloid plaques in AbetaPP/PS1 transgenic mice.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Ferro/farmacocinética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Proteína Glial Fibrilar Ácida , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/fisiologia
9.
J Neuropathol Exp Neurol ; 64(7): 638-47, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16042316

RESUMO

Group I metabotropic glutamate receptors (mGluR1) regulate synaptic transmission through the stimulation of phospholipase Cbeta1 (PLCbeta1) and then by the activation of protein kinase C (PKC). Considering these properties, it is conceivable that major cortical functional deficits may be attributed to abnormal mGluR processing and signaling. The present work examines mGluRI expression and signaling in the frontal cortex (area 8) of 3 cases with Pick disease (PiD), a neurodegenerative disease with abnormal phospho-tau accumulation, in comparison with 3 age-matched controls by means of glutamate binding assays, enzymatic activity, gel electrophoresis and Western blotting, solubility and immunoprecipitation assays, and confocal microscopy. Reduced expression levels of PLCbeta1 and reduced PLCbeta1 activity have been found in PiD. The expression levels of the nonrelated phospholipase PLCgamma, a substrate of tyrosine kinase, are also reduced in PiD. This is accompanied by a marked decrease in the expression of cPKCalpha and increased expression of the inner band (76 kDa) of the nPKCdelta doublet at the expense of a decrease of the phosphorylated (active) form (78 kDa). In contrast, L-[3H]glutamate-specific binding to mGluRs is augmented in PiD cases, mainly because of the higher mGluR1 and mGluRs expression levels detected. No modifications in PLCbeta1 solubility have been observed in PiD and no interactions between PLCbeta1 and tau have been demonstrated in diseased and control cases. Moreover, double-labeling immunofluorescence and confocal microscopy have shown no colocalization of phospho-tau (AT8 antibody) and PLCbeta1 in phospho-tau inclusions, including Pick bodies. These results demontrate for the first time abnormal mGluR signaling in the cerebral cortex in PiD and selective vulnerability of phospholipases and PKC to PiD.


Assuntos
Lobo Frontal/metabolismo , Doença de Pick/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Idoso , Western Blotting , Feminino , Imunofluorescência , Lobo Frontal/patologia , Ácido Glutâmico/metabolismo , Humanos , Imunoprecipitação , Isoenzimas/metabolismo , Masculino , Microscopia Confocal , Fosfolipase C beta , Fosfolipase C gama , Doença de Pick/patologia , Proteína Quinase C/metabolismo , Proteína Quinase C-alfa , Proteína Quinase C-delta , Fosfolipases Tipo C/metabolismo
10.
Neurobiol Dis ; 20(3): 685-93, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15949941

RESUMO

The aim of the present work was to analyze the status of metabotropic glutamate receptors (mGluRs) in the frontal cortex (area 8) from ten cases with common form DLB (cDLB) and eleven cases with pure AD in comparison with five age-matched controls. mGluRs, determined by radioligand binding assays, were significantly decreased in cerebral cortex in cDLB. This decrease was already present in cases with early AD changes not involving the frontal cortex, but dramatically correlated with AD neuropathological changes, at its greatest in isocortical stages, which was associated with a decrease in the expression levels of mGluR1 detected by Western blotting. Moreover, mGluRs analyzed in pure AD were lower than those obtained in cDLB and also correlated with progression of illness. On the other hand, the expression levels of phospholipase Cbeta1 (PLCbeta1) isoform, which is the effector of group I mGluRs, was decreased in parallel in cDLB cases. Finally, the PLCbeta1 decrease was associated with reduced GTP- and l-glutamate-stimulated PLC activity in both cDLB and AD cases. These results show that group I mGluRs/PLC signaling are down-regulated and desensitized in the frontal cortex in cDLB and AD cases and that these modifications worsen with progression of AD changes in the cerebral neocortex. Therefore, group I mGluR dysfunction may be implicated in the pathogenesis of cognitive impairment and dementia in common form of DLB and pure AD.


Assuntos
Doença de Alzheimer/enzimologia , Lobo Frontal/enzimologia , Isoenzimas/metabolismo , Doença por Corpos de Lewy/enzimologia , Neurônios/enzimologia , Receptores de Glutamato Metabotrópico/metabolismo , Fosfolipases Tipo C/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Ligação Competitiva/fisiologia , Progressão da Doença , Regulação para Baixo/fisiologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feminino , Lobo Frontal/patologia , Lobo Frontal/fisiopatologia , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Humanos , Isoenzimas/efeitos dos fármacos , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/fisiopatologia , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Fosfolipase C beta , Ensaio Radioligante , Transdução de Sinais/fisiologia , Fosfolipases Tipo C/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA