Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 22(2): 116-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25622294

RESUMO

Ubiquitination is a post-translational modification that signals multiple processes, including protein degradation, trafficking and DNA repair. Polyubiquitin accumulates globally during the oxidative stress response, and this has been mainly attributed to increased ubiquitin conjugation and perturbations in protein degradation. Here we show that the unconventional Lys63 (K63)-linked polyubiquitin accumulates in the yeast Saccharomyces cerevisiae in a highly sensitive and regulated manner as a result of exposure to peroxides. We demonstrate that hydrogen peroxide inhibits the deubiquitinating enzyme Ubp2, leading to accumulation of K63 conjugates assembled by the Rad6 ubiquitin conjugase and the Bre1 ubiquitin ligase. Using linkage-specific isolation methods and stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics, we identified >100 new K63-polyubiquitinated targets, which were substantially enriched in ribosomal proteins. Finally, we demonstrate that impairment of K63 ubiquitination during oxidative stress affects polysome stability and protein expression, rendering cells more sensitive to stress, and thereby reveal a new redox-regulatory role for this modification.


Assuntos
Estresse Oxidativo/fisiologia , Ubiquitinação/fisiologia , Endopeptidases/metabolismo , Lisina/química , Lisina/metabolismo , Poliubiquitina/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
2.
Cell ; 137(1): 133-45, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19345192

RESUMO

All seven lysine residues in ubiquitin contribute to the synthesis of polyubiquitin chains on protein substrates. Whereas K48-linked chains are well established as mediators of proteasomal degradation, and K63-linked chains act in nonproteolytic events, the roles of unconventional polyubiquitin chains linked through K6, K11, K27, K29, or K33 are not well understood. Here, we report that the unconventional linkages are abundant in vivo and that all non-K63 linkages may target proteins for degradation. Ubiquitin with K48 as the single lysine cannot support yeast viability, and different linkages have partially redundant functions. By profiling both the entire yeast proteome and ubiquitinated proteins in wild-type and ubiquitin K11R mutant strains using mass spectrometry, we identified K11 linkage-specific substrates, including Ubc6, a ubiquitin-conjugating enzyme involved in endoplasmic reticulum-associated degradation (ERAD). Ubc6 primarily synthesizes K11-linked chains, and K11 linkages function in the ERAD pathway. Thus, unconventional polyubiquitin chains are critical for ubiquitin-proteasome system function.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/análise , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Lisina/metabolismo , Espectrometria de Massas , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
3.
J Toxicol Environ Health A ; 70(10): 861-74, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17454562

RESUMO

Common eiders (Somateria mollissima) were fed added Se (as L-selenomethionine) in concentrations increasing from 10 to 80 ppm in a pilot study (Study 1) or 20 (low exposure) and up to 60 (high exposure) ppm Se in Study 2. Body weights of Study 1 ducks and high-exposure ducks in Study 2 declined rapidly. Mean concentrations of Se in blood reached 32.4 ppm wet weight in Study 1 and 17.5 ppm wet weight in high-exposure birds in Study 2. Mean Se concentrations in liver ranged from 351 (low exposure, Study 2) to 1252 ppm dry weight (Study 1). Oxidative stress was evidenced by Se-associated effects on glutathione metabolism. As Se concentrations in liver increased, Se-dependent glutathione peroxidase activity, glutathione reductase activity, oxidized glutathione levels, and the ratio of hepatic oxidized to reduced glutathione increased. In Study 2, the T-cell-mediated immune response was adversely affected in high-exposure eiders, but ducks in the low-exposure group exhibited evidence of an enhanced antibody-mediated immune response. Gross lesions in high-exposure ducks included emaciation, absence of thymus, and loss of nails from digits. Histologic lesions included severe depletion of lymphoid organs, hepatopathy, and necrosis of feather pulp and feather epithelium. Field studies showed that apparently healthy sea ducks generally have higher levels of Se in liver than healthy fresh-water birds, but lower than concentrations found in our study. Data indicate that common eiders and probably other sea ducks possess a higher threshold, or adverse effect level, for Se in tissues than fresh-water species. However, common eiders developed signs of Se toxicity similar to those seen in fresh-water birds.


Assuntos
Selênio/farmacocinética , Selênio/toxicidade , Administração Oral , Análise de Variância , Animais , Patos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Selênio/administração & dosagem , Selenometionina/administração & dosagem , Selenometionina/farmacocinética , Selenometionina/toxicidade , Estatísticas não Paramétricas , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA