Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36431678

RESUMO

In recent decades, several abatement techniques have been proposed for organic dyes and metal cations. In this scenario, adsorption is the most known and studied. Clinoptilolite was considered, since it is a zeolite with a relatively low cost (200-600 $ tons-1) compared to the most well-known adsorbent used in wastewater treatment. In this work, Clinoptilolite was used for the adsorption of Methylene Blue (MB) at three different concentrations, namely, 100, 200, and 250 ppm. Furthermore, the adsorption capacity of the natural zeolite was compared with that of Activated Charcoal (250 ppm of MB). The two adsorbents were characterized by complementary techniques, such as N2 physisorption at -196 °C, X-ray diffraction, and field emission scanning electron microscopy. During the adsorption tests, Clinoptilolite exhibited the best adsorption capacities at 100 ppm: the abatement reached 98% (t = 15 min). Both Clinoptilolite and Activated Charcoal, at 250 ppm, exhibited the same adsorption capacities, namely, 96%. Finally, at 250 ppm MB, the adsorption capacity of Clinoptilolite was analyzed with the copresence of Zn2+ and Cd2+ (10 ppm), and the adsorption capacities were compared with those of Activated Charcoal. The results showed that both adsorbents achieved 100% MB abatement (t = 40 min). However, cation adsorption reached a plateau after 120 min (Zn2+ = 86% and 57%; Cd2+ = 53% and 50%, for Activated Charcoal and Clinoptilolite, respectively) due to the preferential adsorption of MB molecules. Furthermore, kinetic studies were performed to fully investigate the adsorption mechanism. It was evidenced that the pseudo-second-order kinetic model is effective in describing the adsorption mechanism of both adsorbents, highlighting the chemical interaction between the adsorbent and adsorbate.

2.
Biotechnol Biofuels ; 11: 301, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410576

RESUMO

BACKGROUND: Methanogenic archaea are of importance to the global C-cycle and to biological methane (CH4) production through anaerobic digestion and pure culture. Here, the individual and combined effects of copper (Cu), zinc (Zn), acetate, and propionate on the metabolism of the autotrophic, hydrogenotrophic methanogen Methanococcus maripaludis S2 were investigated. Cu, Zn, acetate, and propionate may interfere directly and indirectly with the acetyl-CoA synthesis and biological CH4 production. Thus, these compounds can compromise or improve the performance of M. maripaludis, an organism which can be applied as biocatalyst in the carbon dioxide (CO2)-based biological CH4 production (CO2-BMP) process or of methanogenic organisms applied in anaerobic digestion. RESULTS: Here, we show that Cu concentration of 1.9 µmol L-1 reduced growth of M. maripaludis, whereas 4.4 and 6.3 µmol L-1 of Cu even further retarded biomass production. However, 1.0 mmol L-1 of Zn enhanced growth, but at Zn concentrations > 2.4 mmol L-1 no growth could be observed. When both, Cu and Zn, were supplemented to the medium, growth and CH4 production could even be observed at the highest tested concentration of Cu (6.3 µmol L-1). Hence, it seems that the addition of 1 mmol L-1 of Zn enhanced the ability of M. maripaludis to counteract the toxic effect of Cu. The physiological effect to rising concentrations of acetate (12.2, 60.9, 121.9 mmol L-1) and/or propionate (10.3, 52.0, 104.1 mmol L-1) was also investigated. When instead of acetate 10.3 mmol L-1 propionate was provided in the growth medium, M. maripaludis could grow without reduction of the specific growth rate (µ) or the specific CH4 productivity (qCH4). A combination of inorganic and/or organic compounds resulted in an increase of µ and qCH4 for Zn/Cu and Zn/acetate beyond the values that were observed if only the individual concentrations of Zn, Cu, acetate were used. CONCLUSIONS: Our study sheds light on the physiological effect of VFAs and heavy metals on M. maripaludis. Differently from µ and qCH4, MER was not influenced by the presence of these compounds. This indicated that each of these compounds directly interacted with the C-fixation machinery of M. maripaludis. Until now, the uptake of VFAs other than acetate was not considered to enhance growth and CH4 production of methanogens. The finding of propionate uptake by M. maripaludis is important for the interpretation of VFA cycling in anaerobic microenvironments. Due to the importance of methanogens in natural and artificial anaerobic environments, our results help to enhance the understanding the physiological and biotechnological importance with respect to anaerobic digestion, anaerobic wastewater treatment, and CO2-BMP. Finally, we propose a possible mechanism for acetate uptake into M. maripaludis supported by in silico analyses.

3.
Bioresour Technol ; 200: 884-90, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26600457

RESUMO

This study was conducted to investigate the effects of chemical pretreatments on biogas production from coffee waste. After the preparation of a mixture of coffee waste with a TS concentration of 10%w/w, basic and acid pretreatments were conducted in batch mode and their performances were compared with the biogas produced from a mixture without any pretreatment stage. The basic pretreatment demonstrated a very good action on the hydrolysis of the lignin and cellulose, and permitted a biogas production of about 18NL/L with a methane content of almost 80%v/v. Thus, the basic pretreatment has been used to scale-up the process. The coffee refuse was has been carried out in a 45L anaerobic reactor working in continuous mode and in a mesophilic condition (35°C) with a Hydraulic Retention Time (HRT) of about 40days. A high biogas production of 1.14NL/Ld, with a methane percentage of 65%v/v was obtained, thus permitting a process yield of about 83% to be obtained.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Café/química , Resíduos , Álcalis/química , Anaerobiose , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Ácidos Graxos Voláteis/análise , Hidrólise , Metano/biossíntese , Sementes/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA